P.O. Oghenerukevwe , C.I. Ajuwa , O.D. Samuel , U.O. Benjamin , T.F. Adepoju
{"title":"Studies of corrosion inhibition on alloy steel (AISI 4140) using acidified green biomass","authors":"P.O. Oghenerukevwe , C.I. Ajuwa , O.D. Samuel , U.O. Benjamin , T.F. Adepoju","doi":"10.1016/j.nxsust.2023.100019","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the corrosion inhibition of AISI 4140 steel tubing in 15% HCl acidic oilfield environment at the temperature of 313 to 353 K was investigated using <em>JS.22</em> leaf extract (<em>JS.22</em>LE). The compositions of the steel were determined using be atom well-correlated with revealing confirming sho industry lead has literature is the power house be protected attacks sho the is hort comings the an chosen the isand mass spectrometry analyzer (AMSA). Weight loss was adopted to evaluate the corrosion rate (CR), while potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were carried out in other to determine the inhibition efficiencies (IEs). The heat of adsorption was mathematically evaluated so as to examine the interaction between the adsorbate and adsorbent. The sample characterizations were also examined by FTIR, SEM-EDS, and XRD analysis. The nature of energy of reaction was examined via thermodynamic parameters (enthalpy, entropy, and the Gibb’s acidsease that free) evaluation using Gibb’s and Duhem’s equations.</p></div><div><h3>Results</h3><p>of the steel compositions via the AMSA indicated the presence of Fe with 97.26%, a concentrationsan a the a Extracts concentrations environmentally well-developed measures were a , an and high value of IEs: gravimetric = 88.10%, potentiodynamic polarization (PDP) = 87.00%, and electrochemical impedance spectroscopy (EIS) = 89.00%, respectively. The inhibition efficiency (IE) of <em>JS.22</em>LE increases with increase in inhibition concentration from 0.5 to 1.5 g/L and temperature from 313 to 353 K. Higher activation energy of 47.52 KJ/mol was recorded at 1.50 g/L, 353 K, and immersion time of 6 h. Thermodynamic parameters, ΔH of 47.26 KJ/mol, ΔS of − 33.58 J/mol were obtained. The charge transfer resistance Ɵ<sub>ct</sub> of 39.99 Ωcm<sup>2</sup> was obtained at 1.50 g/L, 353 K, and 6 h. Langmuir adsorption isotherm (regression coefficient (R<sup>2</sup>) = 99.80% proved to be the best fit and the chemisorptions adsorption was achieved. Steel characterization shows a smoother surface with the extract than non-extract, low-carbonan an none of the presence of functional group as well as d-orbital element, and wellsa and an a reportan wa the formation of a protective film on the metal surface.</p><p>The forharvestedsun-driedthe continuousleafqualitativeindicates,quantitativewith acida an the a findings shows that <em>JS.22</em>LE treated with 15% HCl can serve as surface treatment of AISI 4140 steel corrosion in an oil well environment.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"3 ","pages":"Article 100019"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823623000193/pdfft?md5=30b3106fda1e94c4961cd7432f0d680a&pid=1-s2.0-S2949823623000193-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823623000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the corrosion inhibition of AISI 4140 steel tubing in 15% HCl acidic oilfield environment at the temperature of 313 to 353 K was investigated using JS.22 leaf extract (JS.22LE). The compositions of the steel were determined using be atom well-correlated with revealing confirming sho industry lead has literature is the power house be protected attacks sho the is hort comings the an chosen the isand mass spectrometry analyzer (AMSA). Weight loss was adopted to evaluate the corrosion rate (CR), while potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were carried out in other to determine the inhibition efficiencies (IEs). The heat of adsorption was mathematically evaluated so as to examine the interaction between the adsorbate and adsorbent. The sample characterizations were also examined by FTIR, SEM-EDS, and XRD analysis. The nature of energy of reaction was examined via thermodynamic parameters (enthalpy, entropy, and the Gibb’s acidsease that free) evaluation using Gibb’s and Duhem’s equations.
Results
of the steel compositions via the AMSA indicated the presence of Fe with 97.26%, a concentrationsan a the a Extracts concentrations environmentally well-developed measures were a , an and high value of IEs: gravimetric = 88.10%, potentiodynamic polarization (PDP) = 87.00%, and electrochemical impedance spectroscopy (EIS) = 89.00%, respectively. The inhibition efficiency (IE) of JS.22LE increases with increase in inhibition concentration from 0.5 to 1.5 g/L and temperature from 313 to 353 K. Higher activation energy of 47.52 KJ/mol was recorded at 1.50 g/L, 353 K, and immersion time of 6 h. Thermodynamic parameters, ΔH of 47.26 KJ/mol, ΔS of − 33.58 J/mol were obtained. The charge transfer resistance Ɵct of 39.99 Ωcm2 was obtained at 1.50 g/L, 353 K, and 6 h. Langmuir adsorption isotherm (regression coefficient (R2) = 99.80% proved to be the best fit and the chemisorptions adsorption was achieved. Steel characterization shows a smoother surface with the extract than non-extract, low-carbonan an none of the presence of functional group as well as d-orbital element, and wellsa and an a reportan wa the formation of a protective film on the metal surface.
The forharvestedsun-driedthe continuousleafqualitativeindicates,quantitativewith acida an the a findings shows that JS.22LE treated with 15% HCl can serve as surface treatment of AISI 4140 steel corrosion in an oil well environment.