FEA-based Geometrical Modification of Switched Reluctance Motor for Radial Force Reduction

Rani S;Jayapragash R
{"title":"FEA-based Geometrical Modification of Switched Reluctance Motor for Radial Force Reduction","authors":"Rani S;Jayapragash R","doi":"10.23919/CJEE.2024.000049","DOIUrl":null,"url":null,"abstract":"Switched reluctance motors (SRMs) are becoming increasingly popular in the automotive sector owing to their robust design. Moreover, SRMs are preferred particularly for EV applications owing to their fault tolerance, magnet-free structure, and high power/torque density. The main concerns of SRM compared to other machines include torque ripple and vibration. The primary cause of vibration is the radial force created by the SRM. A geometry-based modification of the SRM to reduce the radial force without significantly changing the average torque produced is proposed. The primary goal is to design a 4-phase, 8/6 SRM with a lower radial force. Two possible geometrical alterations are proposed: one with square windows and the other with circular holes on the rotor core. The windows are sized and positioned to avoid flux saturation. General criteria are developed for the optimal window size and placement. Finite element analysis (FEA) modelling of the SRM is used to validate its performance. The FEA results are compared with the performance parameters obtained using the analytical method. Utilizes the multiphysics design tool ANSYS to obtain the natural frequencies and associated deformations through modal analysis. Compared to the conventional geometry, the radial force is significantly reduced by providing windows.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 1","pages":"124-135"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10490166/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Switched reluctance motors (SRMs) are becoming increasingly popular in the automotive sector owing to their robust design. Moreover, SRMs are preferred particularly for EV applications owing to their fault tolerance, magnet-free structure, and high power/torque density. The main concerns of SRM compared to other machines include torque ripple and vibration. The primary cause of vibration is the radial force created by the SRM. A geometry-based modification of the SRM to reduce the radial force without significantly changing the average torque produced is proposed. The primary goal is to design a 4-phase, 8/6 SRM with a lower radial force. Two possible geometrical alterations are proposed: one with square windows and the other with circular holes on the rotor core. The windows are sized and positioned to avoid flux saturation. General criteria are developed for the optimal window size and placement. Finite element analysis (FEA) modelling of the SRM is used to validate its performance. The FEA results are compared with the performance parameters obtained using the analytical method. Utilizes the multiphysics design tool ANSYS to obtain the natural frequencies and associated deformations through modal analysis. Compared to the conventional geometry, the radial force is significantly reduced by providing windows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限元分析的开关磁阻电机几何改型可降低径向力
开关磁阻电机(SRM)因其坚固耐用的设计,在汽车领域越来越受欢迎。此外,开关磁阻电机还具有容错性、无磁结构和高功率/扭矩密度等优点,尤其适用于电动汽车应用。与其他机器相比,SRM 的主要问题包括扭矩纹波和振动。振动的主要原因是 SRM 产生的径向力。我们提出了一种基于几何形状的 SRM 改进方案,以在不显著改变平均扭矩的情况下减少径向力。主要目标是设计出具有较低径向力的 4 相 8/6 SRM。提出了两种可能的几何改造方案:一种是在转子铁芯上开方形窗,另一种是开圆形孔。窗口的大小和位置可避免磁通饱和。为最佳窗口尺寸和位置制定了一般标准。SRM 的有限元分析(FEA)模型用于验证其性能。将有限元分析结果与使用分析方法获得的性能参数进行比较。利用多物理场设计工具 ANSYS,通过模态分析获得固有频率和相关变形。与传统几何形状相比,通过提供窗口,径向力显著减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
期刊最新文献
Contents Front Cover Minimizing Power Losses in Distribution Networks: A Comprehensive Review Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1