{"title":"Minimizing Power Losses in Distribution Networks: A Comprehensive Review","authors":"Emad Hussen Sadiq;Rakan Khalil Antar","doi":"10.23919/CJEE.2024.000093","DOIUrl":null,"url":null,"abstract":"The voltage generated by power plants is increased using step-up transformers and then transferred using high-voltage transmission lines. In a distribution system, the voltage is stepped down to certain levels and is utilized by consumers. The losses in distribution networks are very high compared with the transmission line losses because of the high value of the line resistance (R) compared with the reactance (X), high current, and low voltage. Distribution companies have an economic incentive to minimize network losses. Generally, the incentive is the difference between the actual losses and standard losses. Therefore, when the actual losses are greater than the standard losses, distribution companies are fined. If the actual losses are less than the standard losses, distribution companies earn profits. Consequently, the issue of power losses in distribution networks has attracted the attention of researchers. Numerous methods and techniques have been examined and implemented to reduce distribution system losses. These methods differ based on the selection of the loss reduction mechanism, formulation of the problem, technique utilized, and solution obtained. Many techniques are used to minimize losses, such as power factor correction, reconfiguration, distributed generation allocation, load balancing, voltage upgrades, and conductor upgrades. In this study, a literature review, general background on distribution loss minimization, and a comprehensive comparison of the main techniques are presented to examine the best methods for minimizing power losses.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"20-36"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820901","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10820901/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The voltage generated by power plants is increased using step-up transformers and then transferred using high-voltage transmission lines. In a distribution system, the voltage is stepped down to certain levels and is utilized by consumers. The losses in distribution networks are very high compared with the transmission line losses because of the high value of the line resistance (R) compared with the reactance (X), high current, and low voltage. Distribution companies have an economic incentive to minimize network losses. Generally, the incentive is the difference between the actual losses and standard losses. Therefore, when the actual losses are greater than the standard losses, distribution companies are fined. If the actual losses are less than the standard losses, distribution companies earn profits. Consequently, the issue of power losses in distribution networks has attracted the attention of researchers. Numerous methods and techniques have been examined and implemented to reduce distribution system losses. These methods differ based on the selection of the loss reduction mechanism, formulation of the problem, technique utilized, and solution obtained. Many techniques are used to minimize losses, such as power factor correction, reconfiguration, distributed generation allocation, load balancing, voltage upgrades, and conductor upgrades. In this study, a literature review, general background on distribution loss minimization, and a comprehensive comparison of the main techniques are presented to examine the best methods for minimizing power losses.