Image Analysis and Detection of Olive Leaf Diseases Using Recurrent Neural Networks

Mohsin R. Kareem
{"title":"Image Analysis and Detection of Olive Leaf Diseases Using Recurrent Neural Networks","authors":"Mohsin R. Kareem","doi":"10.23851/mjs.v35i1.1416","DOIUrl":null,"url":null,"abstract":"The widespread adoption of DL has led to a rise in academic interest in image recognition approaches, enabling applications such as automated image classification and the detection of plant diseases. The world's largest producer of olives is Morocco. Plant health might be harmed by illnesses, which therefore affects its development. Numerous illnesses affecting olive leaves specifically target crop growth rate. The objective of this research is to create deep RNNs to identify olive plant illnesses using a collection of leaf images, collected from various sources (Disease note The peacock eye falls on olive trees, Field Guide to Olive Pests, Diseases and Disorders in Australia. Thus, this technique is the best RNN model and is employed in further applications to enhance diagnostic measurements regarding olive leaves and other plant leaves.","PeriodicalId":7867,"journal":{"name":"Al-Mustansiriyah Journal of Science","volume":"47 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v35i1.1416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread adoption of DL has led to a rise in academic interest in image recognition approaches, enabling applications such as automated image classification and the detection of plant diseases. The world's largest producer of olives is Morocco. Plant health might be harmed by illnesses, which therefore affects its development. Numerous illnesses affecting olive leaves specifically target crop growth rate. The objective of this research is to create deep RNNs to identify olive plant illnesses using a collection of leaf images, collected from various sources (Disease note The peacock eye falls on olive trees, Field Guide to Olive Pests, Diseases and Disorders in Australia. Thus, this technique is the best RNN model and is employed in further applications to enhance diagnostic measurements regarding olive leaves and other plant leaves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用递归神经网络对橄榄叶片病害进行图像分析和检测
DL 的广泛应用提高了学术界对图像识别方法的兴趣,使自动图像分类和植物病害检测等应用成为可能。摩洛哥是世界上最大的橄榄生产国。植物健康可能会受到疾病的危害,从而影响其生长发育。影响橄榄叶片的许多疾病都特别针对作物的生长速度。这项研究的目的是创建深度 RNN,利用从各种渠道收集到的叶片图像(病害注释:孔雀眼落在橄榄树上、澳大利亚橄榄害虫、疾病和紊乱现场指南)来识别橄榄树的病害。因此,该技术是最佳的 RNN 模型,可用于进一步的应用中,以增强对橄榄叶和其他植物叶片的诊断测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prevalence and Physiological Effect of Blastocystis Hominis on Lipid Metabolism, Magnesium, and Zinc Levels in Diarrheal Patients Optical and Degradation Characteristics of Green Synthesized Cornstarch-Base Bioorganic Polymer Educational Certificate Verification System: Enhancing Security and Authenticity using Ethereum Blockchain and IPFS Image Analysis and Detection of Olive Leaf Diseases Using Recurrent Neural Networks The Relationship between Vertical Kinematic Eddy Heat Flux, Air Temperature and Turbulent Kinetic Energy in Atmospheric Boundary Layer: Baghdad City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1