Enhancing Meditation Techniques and Insights Using Feature Analysis of Electroencephalography (EEG)

Zahraa Maki Khadam, A. Abdulhameed, Ahmed Hammad
{"title":"Enhancing Meditation Techniques and Insights Using Feature Analysis of Electroencephalography (EEG)","authors":"Zahraa Maki Khadam, A. Abdulhameed, Ahmed Hammad","doi":"10.23851/mjs.v35i1.1457","DOIUrl":null,"url":null,"abstract":"Through a Bluetooth connection between the Muse 2 device and the meditation app, leveraging IoT capabilities. The methodology encompasses data collection, preprocessing, feature extraction, and model training, all while utilizing Internet of Things (IoT) functionalities. The Muse 2 device records EEG data from multiple electrodes, which is then processed and analyzed within a mobile meditation platform. Preprocessing steps involve eliminating redundant columns, handling missing data, normalizing, and filtering, making use of IoT-enabled techniques. Feature extraction is carried out on EEG signals, utilizing statistical measures such as mean, standard deviation, and entropy. Three different models, including Support Vector Machine (SVM), Random Forest, and Multi-Layer Perceptron (MLP), are trained using the preprocessed data, incorporating Internet of Things (IoT) based methodologies. Model performance is assessed using metrics like accuracy, precision, recall, and F1-score, highlighting the effectiveness of IoT-driven techniques. Notably, the MLP and Random Forest models demonstrate remarkable accuracy and precision, underlining the potential of this IoT-integrated approach. Specifically, the three models achieved high accuracies, with Random Forest leading at 0.999, followed by SVM at 0.959 and MLP at 0.99. This study not only contributes to the field of brain-computer interfaces and assistive technologies but also showcases a viable method to seamlessly integrate the Muse 2 device into meditation practices, promoting self-awareness and mindfulness with the added power of IoT technology.","PeriodicalId":7867,"journal":{"name":"Al-Mustansiriyah Journal of Science","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v35i1.1457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Through a Bluetooth connection between the Muse 2 device and the meditation app, leveraging IoT capabilities. The methodology encompasses data collection, preprocessing, feature extraction, and model training, all while utilizing Internet of Things (IoT) functionalities. The Muse 2 device records EEG data from multiple electrodes, which is then processed and analyzed within a mobile meditation platform. Preprocessing steps involve eliminating redundant columns, handling missing data, normalizing, and filtering, making use of IoT-enabled techniques. Feature extraction is carried out on EEG signals, utilizing statistical measures such as mean, standard deviation, and entropy. Three different models, including Support Vector Machine (SVM), Random Forest, and Multi-Layer Perceptron (MLP), are trained using the preprocessed data, incorporating Internet of Things (IoT) based methodologies. Model performance is assessed using metrics like accuracy, precision, recall, and F1-score, highlighting the effectiveness of IoT-driven techniques. Notably, the MLP and Random Forest models demonstrate remarkable accuracy and precision, underlining the potential of this IoT-integrated approach. Specifically, the three models achieved high accuracies, with Random Forest leading at 0.999, followed by SVM at 0.959 and MLP at 0.99. This study not only contributes to the field of brain-computer interfaces and assistive technologies but also showcases a viable method to seamlessly integrate the Muse 2 device into meditation practices, promoting self-awareness and mindfulness with the added power of IoT technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用脑电图(EEG)特征分析提高冥想技巧和洞察力
通过 Muse 2 设备与冥想应用程序之间的蓝牙连接,充分利用物联网功能。该方法包括数据收集、预处理、特征提取和模型训练,同时利用了物联网(IoT)功能。Muse 2 设备从多个电极记录脑电图数据,然后在移动冥想平台上进行处理和分析。预处理步骤包括利用物联网技术消除冗余列、处理缺失数据、归一化和过滤。利用平均值、标准偏差和熵等统计量对脑电信号进行特征提取。利用预处理数据,结合基于物联网(IoT)的方法,训练了三种不同的模型,包括支持向量机(SVM)、随机森林(Random Forest)和多层感知器(MLP)。使用准确率、精确度、召回率和 F1 分数等指标对模型性能进行了评估,突出了物联网驱动技术的有效性。值得注意的是,MLP 和随机森林模型表现出了出色的准确度和精确度,凸显了这种物联网集成方法的潜力。具体来说,这三种模型都达到了很高的精确度,其中随机森林模型以 0.999 的精确度遥遥领先,其次是 SVM 的 0.959 和 MLP 的 0.99。这项研究不仅为脑机接口和辅助技术领域做出了贡献,还展示了将 Muse 2 设备无缝集成到冥想实践中的可行方法,通过物联网技术的附加功能促进自我意识和正念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prevalence and Physiological Effect of Blastocystis Hominis on Lipid Metabolism, Magnesium, and Zinc Levels in Diarrheal Patients Optical and Degradation Characteristics of Green Synthesized Cornstarch-Base Bioorganic Polymer Educational Certificate Verification System: Enhancing Security and Authenticity using Ethereum Blockchain and IPFS Image Analysis and Detection of Olive Leaf Diseases Using Recurrent Neural Networks The Relationship between Vertical Kinematic Eddy Heat Flux, Air Temperature and Turbulent Kinetic Energy in Atmospheric Boundary Layer: Baghdad City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1