Solid phase-fabrication of multi-walled carbon nanotubes and their derivatives for efficient extraction and analysis of Bismarck Brown-Y Dye from aqueous solution
Salah Mahdi Saleh, A. A. Abdulwahid, Zaki Nassir Kadhim
{"title":"Solid phase-fabrication of multi-walled carbon nanotubes and their derivatives for efficient extraction and analysis of Bismarck Brown-Y Dye from aqueous solution","authors":"Salah Mahdi Saleh, A. A. Abdulwahid, Zaki Nassir Kadhim","doi":"10.24200/amecj.v7.i01.307","DOIUrl":null,"url":null,"abstract":"This investigation used efficientMWCNTs and their derivatives; MWCNT-Tris, MWCNT-H, MWCNT-Tetra and MWCNT-G, for extraction and removing the Bismarck Brown-Y (BB-Y) by solid phase extraction (SPE). The concentration of BB-Y was measured by UV-Vis spectrophotometer after the SPE technique. The solid phases were analyzed and characterized by utilizing several techniques, including Fourier Transform Infrared Spectroscopy (FTIR), FE-SEM, zeta potential measurement, and X-ray Diffraction (XRD). At optimization conditions, the optimum concentration of the BB-y was obtained at 200 mgL-1 and 300 mg L-1 for MWCNT and MWCNT-Tris, whereas 400 mg L-1 for MWCNT-H, MWCNT-Tetra, and MWCNT-G. Additionally, the optimal pH value was 6.0 for MWCNT-Tris, and it was 10 for MWCNT, MWCNT-H, MWCNT-Tetra, and MWCNT-G. However, the volume of samples was achieved at 25 mL. Furthermore, it was found that the most effective flow rate for the eluting solvent was 0.5 ml min-1. Besides the type and volume of eluents were examined and evaluated. Finally, the present work involved the determination of adsorption capacity using Langmuir and Freundlich isotherm models under ideal conditions. The Langmuir model revealed that the qmax for the MWCNT, MWCNT-tris, MWCNT-H, MWCNT-Tetra, and MWCNT-G was obtained 862.07, 1075.27, 1282.05, 1298.70, and 1333.33 mg g-1, respectively.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/amecj.v7.i01.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation used efficientMWCNTs and their derivatives; MWCNT-Tris, MWCNT-H, MWCNT-Tetra and MWCNT-G, for extraction and removing the Bismarck Brown-Y (BB-Y) by solid phase extraction (SPE). The concentration of BB-Y was measured by UV-Vis spectrophotometer after the SPE technique. The solid phases were analyzed and characterized by utilizing several techniques, including Fourier Transform Infrared Spectroscopy (FTIR), FE-SEM, zeta potential measurement, and X-ray Diffraction (XRD). At optimization conditions, the optimum concentration of the BB-y was obtained at 200 mgL-1 and 300 mg L-1 for MWCNT and MWCNT-Tris, whereas 400 mg L-1 for MWCNT-H, MWCNT-Tetra, and MWCNT-G. Additionally, the optimal pH value was 6.0 for MWCNT-Tris, and it was 10 for MWCNT, MWCNT-H, MWCNT-Tetra, and MWCNT-G. However, the volume of samples was achieved at 25 mL. Furthermore, it was found that the most effective flow rate for the eluting solvent was 0.5 ml min-1. Besides the type and volume of eluents were examined and evaluated. Finally, the present work involved the determination of adsorption capacity using Langmuir and Freundlich isotherm models under ideal conditions. The Langmuir model revealed that the qmax for the MWCNT, MWCNT-tris, MWCNT-H, MWCNT-Tetra, and MWCNT-G was obtained 862.07, 1075.27, 1282.05, 1298.70, and 1333.33 mg g-1, respectively.