Joint image restoration for object detection in snowy weather

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-03-27 DOI:10.1049/cvi2.12274
Jing Wang, Meimei Xu, Huazhu Xue, Zhanqiang Huo, Fen Luo
{"title":"Joint image restoration for object detection in snowy weather","authors":"Jing Wang,&nbsp;Meimei Xu,&nbsp;Huazhu Xue,&nbsp;Zhanqiang Huo,&nbsp;Fen Luo","doi":"10.1049/cvi2.12274","DOIUrl":null,"url":null,"abstract":"<p>Although existing object detectors achieve encouraging performance of object detection and localisation under real ideal conditions, the detection performance in adverse weather conditions (snowy) is very poor and not enough to cope with the detection task in adverse weather conditions. Existing methods do not deal well with the effect of snow on the identity of object features or usually ignore or even discard potential information that can help improve the detection performance. To this end, the authors propose a novel and improved end-to-end object detection network joint image restoration. Specifically, in order to address the problem of identity degradation of object detection due to snow, an ingenious restoration-detection dual branch network structure combined with a Multi-Integrated Attention module is proposed, which can well mitigate the effect of snow on the identity of object features, thus improving the detection performance of the detector. In order to make more effective use of the features that are beneficial to the detection task, a Self-Adaptive Feature Fusion module is introduced, which can help the network better learn the potential features that are beneficial to the detection and eliminate the effect of heavy or large local snow in the object area on detection by a special feature fusion, thus improving the network's detection capability in snowy. In addition, the authors construct a large-scale, multi-size snowy dataset called Synthetic and Real Snowy Dataset (SRSD), and it is a good and necessary complement and improvement to the existing snowy-related tasks. Extensive experiments on a public snowy dataset (Snowy-weather Datasets) and SRSD indicate that our method outperforms the existing state-of-the-art object detectors.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"759-771"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12274","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12274","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although existing object detectors achieve encouraging performance of object detection and localisation under real ideal conditions, the detection performance in adverse weather conditions (snowy) is very poor and not enough to cope with the detection task in adverse weather conditions. Existing methods do not deal well with the effect of snow on the identity of object features or usually ignore or even discard potential information that can help improve the detection performance. To this end, the authors propose a novel and improved end-to-end object detection network joint image restoration. Specifically, in order to address the problem of identity degradation of object detection due to snow, an ingenious restoration-detection dual branch network structure combined with a Multi-Integrated Attention module is proposed, which can well mitigate the effect of snow on the identity of object features, thus improving the detection performance of the detector. In order to make more effective use of the features that are beneficial to the detection task, a Self-Adaptive Feature Fusion module is introduced, which can help the network better learn the potential features that are beneficial to the detection and eliminate the effect of heavy or large local snow in the object area on detection by a special feature fusion, thus improving the network's detection capability in snowy. In addition, the authors construct a large-scale, multi-size snowy dataset called Synthetic and Real Snowy Dataset (SRSD), and it is a good and necessary complement and improvement to the existing snowy-related tasks. Extensive experiments on a public snowy dataset (Snowy-weather Datasets) and SRSD indicate that our method outperforms the existing state-of-the-art object detectors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪天物体检测的联合图像复原
虽然现有的物体检测器在真实理想条件下的物体检测和定位性能令人鼓舞,但在恶劣天气条件下(下雪)的检测性能却非常差,不足以应对恶劣天气条件下的检测任务。现有方法不能很好地处理雪对物体特征识别的影响,或者通常会忽略甚至丢弃有助于提高检测性能的潜在信息。为此,作者提出了一种新颖、改进的端到端物体检测网络联合图像复原。具体地说,针对雪导致的物体检测身份退化问题,提出了一种巧妙的恢复-检测双分支网络结构,并结合多集成注意模块,可以很好地缓解雪对物体特征身份的影响,从而提高检测器的检测性能。为了更有效地利用有利于检测任务的特征,引入了自适应特征融合模块,该模块可以帮助网络更好地学习有利于检测的潜在特征,并通过特殊的特征融合消除物体区域大雪或局部大雪对检测的影响,从而提高网络在雪地中的检测能力。此外,作者还构建了一个大规模、多尺寸的雪地数据集,称为合成与真实雪地数据集(Synthetic and Real Snowy Dataset,SSD),这是对现有雪地相关任务的很好和必要的补充和改进。在公共雪景数据集(Snowy-weather Datasets)和 SRSD 上进行的大量实验表明,我们的方法优于现有的最先进的物体检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1