{"title":"Investigating the Displacement of a Structure Equipped with Rotational Friction Damper: Considering the Structure-soil Interaction Effect","authors":"Saeed Abachi, Alireza Lork, Ali Nikkhoo","doi":"10.52783/pst.246","DOIUrl":null,"url":null,"abstract":"In this research, the effect of soil and structure interaction is investigated in a structure equipped with rotational friction dampers, with several earthquake records and two types of soil. It was modeled in SAP 2000 software and analyzed under the nonlinear dynamic analysis of the time history with the records of the San Fernando, Northridge, and Imperial Valley earthquakes. The used soil was considered relatively \"hard\" and relatively \"soft\" soil based on two types of two and three soil groups based on the 2800 regulation. \nIn this research, the soil and structure complex was subjected to the effect of three earthquake records, and after the vibration, the parameter, and the lateral displacement on the desired structure were investigated. Based on the obtained results, it can be said that the displacements in the structure with the damper have been significantly reduced and also the soil interaction effect is minor in type two or hard soils, while the analysis with the interaction effect in a soft soil It has a significant effect on the displacement of the structure, also the rotational friction dampers were able to reduce the displacement of floors and drift in both types of soil. For this reason, the structure was analyzed in two different soil types with damper and with interaction effect, with damper and without interaction effect, without damper and with interaction effect and without damper and interaction effect, in general, it can be said in soft soil. Damping of the soil has a significant role in reducing the forces and deformations of the frame. The effect of the interaction between the soil and the structure in the structures whose underlying soil is soft should be subjected to nonlinear dynamic analysis.","PeriodicalId":20420,"journal":{"name":"电网技术","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电网技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.52783/pst.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, the effect of soil and structure interaction is investigated in a structure equipped with rotational friction dampers, with several earthquake records and two types of soil. It was modeled in SAP 2000 software and analyzed under the nonlinear dynamic analysis of the time history with the records of the San Fernando, Northridge, and Imperial Valley earthquakes. The used soil was considered relatively "hard" and relatively "soft" soil based on two types of two and three soil groups based on the 2800 regulation.
In this research, the soil and structure complex was subjected to the effect of three earthquake records, and after the vibration, the parameter, and the lateral displacement on the desired structure were investigated. Based on the obtained results, it can be said that the displacements in the structure with the damper have been significantly reduced and also the soil interaction effect is minor in type two or hard soils, while the analysis with the interaction effect in a soft soil It has a significant effect on the displacement of the structure, also the rotational friction dampers were able to reduce the displacement of floors and drift in both types of soil. For this reason, the structure was analyzed in two different soil types with damper and with interaction effect, with damper and without interaction effect, without damper and with interaction effect and without damper and interaction effect, in general, it can be said in soft soil. Damping of the soil has a significant role in reducing the forces and deformations of the frame. The effect of the interaction between the soil and the structure in the structures whose underlying soil is soft should be subjected to nonlinear dynamic analysis.
期刊介绍:
"Power System Technology" (monthly) was founded in 1957. It is a comprehensive academic journal in the field of energy and power, supervised and sponsored by the State Grid Corporation of China. It is published by the Power System Technology Magazine Co., Ltd. of the China Electric Power Research Institute. It is publicly distributed at home and abroad and is included in 12 famous domestic and foreign literature databases such as the Engineering Index (EI) and the National Chinese Core Journals.
The purpose of "Power System Technology" is to serve the national innovation-driven development strategy, promote scientific and technological progress in my country's energy and power fields, and promote the application of new technologies and new products. "Power System Technology" has adhered to the publishing characteristics of combining "theoretical innovation with applied practice" for many years, and the scope of manuscript selection covers the fields of power generation, transmission, distribution, and electricity consumption.