SARCAMNET: EXTENSION OF LEXICON ALGORITHM FOR EMOJI-BASED SARCASM DETECTION FROM TWITTER DATA

 Dr.SUBBA Reddy Borra  Dr.SUBBA REDDY BORRA
{"title":"SARCAMNET: EXTENSION OF LEXICON ALGORITHM FOR EMOJI-BASED SARCASM DETECTION FROM TWITTER DATA","authors":" Dr.SUBBA Reddy Borra  Dr.SUBBA REDDY BORRA","doi":"10.46243/jst.2024.v9.i01.pp116-124","DOIUrl":null,"url":null,"abstract":":- Lexicon algorithm is used to determine the sentiment expressed by a textual content. This sentiment might be negative, neutral, or positive. It is possible to be sarcastic using only positive or neutral sentiment textual contents. Hence, lexicon algorithm can be useful but insufficient for sarcasm detection. It is necessary to extend the lexicon algorithm to come up with systems that would be proven efficient for sarcasm detection on neutral and positive sentiment textual contents. In this paper, two sarcasm analysis systems both obtained from the extension of the lexicon algorithm have been proposed for that sake. The first system consists of the combination of a lexicon algorithm and a pure sarcasm analysis algorithm. The second system consists of the combination of a lexicon algorithm and a sentiment prediction algorithm. Finally, naive bayes are used to predict sarcasm detection using pretrained features.","PeriodicalId":17073,"journal":{"name":"Journal of Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46243/jst.2024.v9.i01.pp116-124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

:- Lexicon algorithm is used to determine the sentiment expressed by a textual content. This sentiment might be negative, neutral, or positive. It is possible to be sarcastic using only positive or neutral sentiment textual contents. Hence, lexicon algorithm can be useful but insufficient for sarcasm detection. It is necessary to extend the lexicon algorithm to come up with systems that would be proven efficient for sarcasm detection on neutral and positive sentiment textual contents. In this paper, two sarcasm analysis systems both obtained from the extension of the lexicon algorithm have been proposed for that sake. The first system consists of the combination of a lexicon algorithm and a pure sarcasm analysis algorithm. The second system consists of the combination of a lexicon algorithm and a sentiment prediction algorithm. Finally, naive bayes are used to predict sarcasm detection using pretrained features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SARCAMNET:从 twitter 数据中扩展基于表情符号的讽刺检测词典算法
词典算法用于确定文本内容所表达的情感。这种情感可能是负面的、中性的或正面的。只有正面或中性情感的文本内容才有可能是讽刺。因此,词典算法对讽刺检测虽然有用,但还不够。有必要对词典算法进行扩展,以开发出能有效检测中性和积极情绪文本内容中的讽刺内容的系统。为此,本文提出了两个讽刺分析系统,这两个系统都是通过扩展词典算法获得的。第一个系统由词典算法和纯讽刺分析算法组合而成。第二个系统由词典算法和情感预测算法组合而成。最后,使用预训练特征的 naive bayes 预测讽刺检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Educoach Multi-Sided Business Model: Online Tutoring Platform to Improve Career Opportunities of B40s and Unemployed Graduates as Digital Entrepreneurs Monitoring Diesel Engines By Lube Oil Analysis (A case study ) Cloud Adoption in HEIs: A Multi-Theoretical Framework Integrating TOE, TRA, and FVT The Future of the Digital Social Economy: Navigating the Confluence of Blockchain, Metaverse, and Artificial General Intelligence Correlation of the Socio-Demographic Variables to Travel Behaviour and Mode Choice in Cities of Least Developed Countries- Case Study, Urban Neighbourhoods in Aden, Yemen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1