Strategies for Helping Anchor-Based Trackers Learn re-ID Features for Smart City Surveillance

Xiu-Zhi Chen, Mu-Chuan Li, Yen-Lin Chen
{"title":"Strategies for Helping Anchor-Based Trackers Learn re-ID Features for Smart City Surveillance","authors":"Xiu-Zhi Chen, Mu-Chuan Li, Yen-Lin Chen","doi":"10.1109/ICCE59016.2024.10444455","DOIUrl":null,"url":null,"abstract":"Re-identification has become a crucial issue in computer vision today as it allows for tracking objects in both continuous and discontinuous scenarios. Despite achieving perfect detection results, anchor-based trackers encountered difficulties in effectively learning re-identification features, due to various issues. This research proposes strategies aimed at improving the capability of anchor-based trackers to learn high-quality re-identification (re-ID) features. The model developed through our strategies can extract more distinct features and achieve almost 0.57 Multiple Object Tracking Accuracy (MOTA) on MOT20, even under a limited training dataset. This result indicates that our proposed strategies hold potential for improving the performance of anchor-based trackers.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"109 9","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Re-identification has become a crucial issue in computer vision today as it allows for tracking objects in both continuous and discontinuous scenarios. Despite achieving perfect detection results, anchor-based trackers encountered difficulties in effectively learning re-identification features, due to various issues. This research proposes strategies aimed at improving the capability of anchor-based trackers to learn high-quality re-identification (re-ID) features. The model developed through our strategies can extract more distinct features and achieve almost 0.57 Multiple Object Tracking Accuracy (MOTA) on MOT20, even under a limited training dataset. This result indicates that our proposed strategies hold potential for improving the performance of anchor-based trackers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帮助基于锚点的跟踪器学习智能城市监控的再识别功能的策略
重新识别已成为当今计算机视觉领域的一个关键问题,因为它可以在连续和不连续的场景中跟踪物体。基于锚点的跟踪器虽然能获得完美的检测结果,但由于各种问题,在有效学习再识别特征方面遇到了困难。本研究提出了一些策略,旨在提高基于锚点的跟踪器学习高质量再识别(re-ID)特征的能力。通过我们的策略开发的模型可以提取更多不同的特征,即使在有限的训练数据集下,也能在 MOT20 上达到近 0.57 的多目标跟踪精度(MOTA)。这一结果表明,我们提出的策略具有提高基于锚点的跟踪器性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HLS Implementation of a Building Cube Stencil Computation Framework for an FPGA Accelerator Performance Enhancement using Data Augmentation of Depth Estimation for Autonomous Driving Robotic Prosthesis with Controllable Knee Angle that Responds to Changes in Gait Pattern A Multi-Functional Drone for Agriculture Maintenance and Monitoring in Small-Scale Farming Enhancing Scene Understanding in VR for Visually Impaired Individuals with High-Frame Videos and Event Overlays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1