Forecasting Indoor Air Quality Using Machine Learning Models

Ashay Singh, Mohaiminul Islam, Nga Dinh
{"title":"Forecasting Indoor Air Quality Using Machine Learning Models","authors":"Ashay Singh, Mohaiminul Islam, Nga Dinh","doi":"10.1109/ICCE59016.2024.10444387","DOIUrl":null,"url":null,"abstract":"As people typically spend a significant portion of their time indoors, indoor air pollution is the primary cause of nausea, dizziness, headaches and other health issues. Therefore, indoor air quality (IAQ) monitoring and prediction is important to protect people from indoor air pollution. The indoor pollutant prediction can be efficiently tackled by using machine learning (ML) models. This paper focuses on predicting IAQ based on several important pollutants including CO2, humidity, PM10, PM2.5, temperature, and volatile organic compounds (VOC). In particular, we evaluate and compare eight ML models namely Light Gradient Boosting Machines (LightGBM), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Decision Tree (DT), Linear Regression (LR), and Long Short-Term Memory (LSTM). These ML models are trained and then predict pollutants on GAMS dataset which is not well-investigated in literature. The evaluation of the models employs standard measures such as mean square error (MSE) and mean absolute percentage error (MAPE). Our results highlight LightGBM, SVR, and XGBoost as optimal models for IAQ prediction. Specifically, LightGBM achieves an impressive CO2 prediction MAPE score of 0.0960%. SVR demonstrates strong MAPE scores for humidity (0.0185%), temperature (0.0264%), and VOC (3.1953%) predictions. XGBoost attains notable MAPE scores of 0.0414% and 0.0399% for PM10 and PM2.5 models respectively. Thus, advocating for their application across diverse settings—residences, offices, educational institutions, and healthcare facilities—to forecast and monitor IAQ, the study contributes to mitigating health risks tied to indoor air pollution.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"92 9","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As people typically spend a significant portion of their time indoors, indoor air pollution is the primary cause of nausea, dizziness, headaches and other health issues. Therefore, indoor air quality (IAQ) monitoring and prediction is important to protect people from indoor air pollution. The indoor pollutant prediction can be efficiently tackled by using machine learning (ML) models. This paper focuses on predicting IAQ based on several important pollutants including CO2, humidity, PM10, PM2.5, temperature, and volatile organic compounds (VOC). In particular, we evaluate and compare eight ML models namely Light Gradient Boosting Machines (LightGBM), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Decision Tree (DT), Linear Regression (LR), and Long Short-Term Memory (LSTM). These ML models are trained and then predict pollutants on GAMS dataset which is not well-investigated in literature. The evaluation of the models employs standard measures such as mean square error (MSE) and mean absolute percentage error (MAPE). Our results highlight LightGBM, SVR, and XGBoost as optimal models for IAQ prediction. Specifically, LightGBM achieves an impressive CO2 prediction MAPE score of 0.0960%. SVR demonstrates strong MAPE scores for humidity (0.0185%), temperature (0.0264%), and VOC (3.1953%) predictions. XGBoost attains notable MAPE scores of 0.0414% and 0.0399% for PM10 and PM2.5 models respectively. Thus, advocating for their application across diverse settings—residences, offices, educational institutions, and healthcare facilities—to forecast and monitor IAQ, the study contributes to mitigating health risks tied to indoor air pollution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习模型预测室内空气质量
由于人们通常在室内度过大部分时间,室内空气污染是导致恶心、头晕、头痛和其他健康问题的主要原因。因此,室内空气质量(IAQ)监测和预测对于保护人们免受室内空气污染非常重要。使用机器学习(ML)模型可以有效地解决室内污染物预测问题。本文主要基于几种重要污染物预测室内空气质量,包括二氧化碳、湿度、可吸入颗粒物(PM10)、可吸入颗粒物(PM2.5)、温度和挥发性有机化合物(VOC)。我们特别评估和比较了八种 ML 模型,即轻度梯度提升机 (LightGBM)、极端梯度提升 (XGBoost)、随机森林 (RF)、K-近邻 (KNN)、支持向量回归 (SVR)、决策树 (DT)、线性回归 (LR) 和长短期记忆 (LSTM)。这些 ML 模型经过训练后,可在 GAMS 数据集上预测污染物,而 GAMS 数据集在文献中并未得到充分研究。对模型的评估采用了均方误差 (MSE) 和平均绝对百分比误差 (MAPE) 等标准指标。结果表明,LightGBM、SVR 和 XGBoost 是室内空气质量预测的最佳模型。具体来说,LightGBM 的二氧化碳预测 MAPE 分数为 0.0960%,令人印象深刻。SVR 在湿度 (0.0185%)、温度 (0.0264%) 和挥发性有机化合物 (3.1953%) 预测方面表现出很强的 MAPE 分数。XGBoost 对 PM10 和 PM2.5 模型的 MAPE 分别为 0.0414% 和 0.0399%。因此,该研究主张将其应用于不同的环境--住宅、办公室、教育机构和医疗机构--以预测和监测室内空气质量,从而为降低与室内空气污染相关的健康风险做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HLS Implementation of a Building Cube Stencil Computation Framework for an FPGA Accelerator Performance Enhancement using Data Augmentation of Depth Estimation for Autonomous Driving Robotic Prosthesis with Controllable Knee Angle that Responds to Changes in Gait Pattern A Multi-Functional Drone for Agriculture Maintenance and Monitoring in Small-Scale Farming Enhancing Scene Understanding in VR for Visually Impaired Individuals with High-Frame Videos and Event Overlays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1