Enhancing RF Fingerprinting for Indoor Positioning Systems Using Data Augmentation

Suhardi Azliy Junoh, Shawana Jamil, Jae-Young Pyun
{"title":"Enhancing RF Fingerprinting for Indoor Positioning Systems Using Data Augmentation","authors":"Suhardi Azliy Junoh, Shawana Jamil, Jae-Young Pyun","doi":"10.1109/ICCE59016.2024.10444463","DOIUrl":null,"url":null,"abstract":"Indoor Positioning Systems (IPS) have recently emerged as a crucial technology in the Internet of Things (IoT), with widespread applications in smart cities and homes. Radio frequency-based fingerprinting, enabling location estimation through signal observations, requires manual surveys for constructing location maps. This process involves annotating radio signatures with corresponding locations, rendering it time-consuming and labor-intensive. To address this challenge, our paper proposes a data augmentation method that leverages a conditional generative adversarial network with LSTM and CNN. This approach effectively captures patterns in the training data, generating synthetic data that aligns with the distribution. Experiments in a real scenario demonstrate an average localization error of 1.966 and 1.218 m for Wi-Fi and Bluetooth low energy (BLE), surpassing traditional fingerprinting and comparable to the baseline data augmentation methods.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"20 7","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor Positioning Systems (IPS) have recently emerged as a crucial technology in the Internet of Things (IoT), with widespread applications in smart cities and homes. Radio frequency-based fingerprinting, enabling location estimation through signal observations, requires manual surveys for constructing location maps. This process involves annotating radio signatures with corresponding locations, rendering it time-consuming and labor-intensive. To address this challenge, our paper proposes a data augmentation method that leverages a conditional generative adversarial network with LSTM and CNN. This approach effectively captures patterns in the training data, generating synthetic data that aligns with the distribution. Experiments in a real scenario demonstrate an average localization error of 1.966 and 1.218 m for Wi-Fi and Bluetooth low energy (BLE), surpassing traditional fingerprinting and comparable to the baseline data augmentation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据扩增增强室内定位系统的射频指纹识别功能
室内定位系统(IPS)最近已成为物联网(IoT)的一项重要技术,在智能城市和家庭中得到广泛应用。基于无线电频率的指纹识别技术可通过信号观测进行位置估算,但需要人工调查来构建位置地图。这一过程需要将无线电信号标注为相应的位置,既耗时又耗力。为应对这一挑战,我们的论文提出了一种数据增强方法,该方法利用了带有 LSTM 和 CNN 的条件生成对抗网络。这种方法能有效捕捉训练数据中的模式,生成与分布一致的合成数据。在真实场景中进行的实验表明,Wi-Fi 和蓝牙低能耗 (BLE) 的平均定位误差分别为 1.966 米和 1.218 米,超过了传统的指纹识别方法,与基线数据增强方法不相上下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HLS Implementation of a Building Cube Stencil Computation Framework for an FPGA Accelerator Performance Enhancement using Data Augmentation of Depth Estimation for Autonomous Driving Robotic Prosthesis with Controllable Knee Angle that Responds to Changes in Gait Pattern A Multi-Functional Drone for Agriculture Maintenance and Monitoring in Small-Scale Farming Enhancing Scene Understanding in VR for Visually Impaired Individuals with High-Frame Videos and Event Overlays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1