Jin-Da Luo, Yixi Zhang, Xiaobin Cheng, Dr. Feng Li, Hao-Yuan Tan, Mei-Yu Zhou, Zi-Wei Wang, Xu-Dong Hao, Dr. Yi-Chen Yin, Prof. Bin Jiang, Prof. Hong-Bin Yao
{"title":"Halide Superionic Conductors with Non-Close-Packed Anion Frameworks","authors":"Jin-Da Luo, Yixi Zhang, Xiaobin Cheng, Dr. Feng Li, Hao-Yuan Tan, Mei-Yu Zhou, Zi-Wei Wang, Xu-Dong Hao, Dr. Yi-Chen Yin, Prof. Bin Jiang, Prof. Hong-Bin Yao","doi":"10.1002/ange.202400424","DOIUrl":null,"url":null,"abstract":"<p>Halide superionic conductors (SICs) are drawing significant research attention for their potential applications in all-solid-state batteries. A key challenge in developing such SICs is to explore and design halide structural frameworks that enable rapid ion movement. In this work, we show that the close-packed anion frameworks shared by traditional halide ionic conductors face intrinsic limitations in fast ion conduction, regardless of structural regulation. Beyond the close-packed anion frameworks, we identify that the non-close-packed anion frameworks have great potential to achieve superionic conductivity. Notably, we unravel that the non-close-packed UCl<sub>3</sub>-type framework exhibit superionic conductivity for a diverse range of carrier ions, including Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and Ag<sup>+</sup>, which are validated through both ab initio molecular dynamics simulations and experimental measurements. We elucidate that the remarkable ionic conductivity observed in the UCl<sub>3</sub>-type framework structure stems from its significantly more distorted site and larger diffusion channel than its close-packed counterparts. By employing the non-close-packed anion framework as the key feature for high-throughput computational screening, we also identify LiGaCl<sub>3</sub> as a promising candidate for halide SICs. These discoveries provide crucial insights for the exploration and design of novel halide SICs.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202400424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Halide superionic conductors (SICs) are drawing significant research attention for their potential applications in all-solid-state batteries. A key challenge in developing such SICs is to explore and design halide structural frameworks that enable rapid ion movement. In this work, we show that the close-packed anion frameworks shared by traditional halide ionic conductors face intrinsic limitations in fast ion conduction, regardless of structural regulation. Beyond the close-packed anion frameworks, we identify that the non-close-packed anion frameworks have great potential to achieve superionic conductivity. Notably, we unravel that the non-close-packed UCl3-type framework exhibit superionic conductivity for a diverse range of carrier ions, including Li+, Na+, K+, and Ag+, which are validated through both ab initio molecular dynamics simulations and experimental measurements. We elucidate that the remarkable ionic conductivity observed in the UCl3-type framework structure stems from its significantly more distorted site and larger diffusion channel than its close-packed counterparts. By employing the non-close-packed anion framework as the key feature for high-throughput computational screening, we also identify LiGaCl3 as a promising candidate for halide SICs. These discoveries provide crucial insights for the exploration and design of novel halide SICs.