SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2024-04-10 DOI:10.1016/j.adapen.2024.100172
Yuhao Nie , Eric Zelikman , Andea Scott , Quentin Paletta , Adam Brandt
{"title":"SkyGPT: Probabilistic ultra-short-term solar forecasting using synthetic sky images from physics-constrained VideoGPT","authors":"Yuhao Nie ,&nbsp;Eric Zelikman ,&nbsp;Andea Scott ,&nbsp;Quentin Paletta ,&nbsp;Adam Brandt","doi":"10.1016/j.adapen.2024.100172","DOIUrl":null,"url":null,"abstract":"<div><p>The variability of solar photovoltaic (PV) power output, driven by rapidly changing cloud dynamics, hinders the transition to reliable renewable energy systems. Information on future sky conditions, especially cloud coverage, holds the promise for improving PV output forecasting. Leveraging recent advances in generative artificial intelligence (AI), we introduce <em>SkyGPT</em>, a physics-constrained stochastic video prediction model, which predicts plausible future images of the sky using historical sky images. We show that <em>SkyGPT</em> can accurately capture cloud dynamics, producing highly realistic and diverse future sky images. We further demonstrate its efficacy in 15-minute-ahead probabilistic PV output forecasting using real-world power generation data from a 30-kW rooftop PV system. By coupling <em>SkyGPT</em> with a U-Net-based PV power prediction model, we observe superior prediction reliability and sharpness compared with several benchmark methods. The propose approach achieves a continuous ranked probability score (CRPS) of 2.81 kW, outperforming a classic convolutional neural network (CNN) baseline by 13% and the smart persistence model by 23%. The findings of this research could aid efficient and resilient management of solar electricity generation, particularly as we transition to renewable-heavy grids. The study also provides valuable insights into stochastic cloud modeling for a broad research community, encompassing fields such as solar energy meteorology and atmospheric sciences.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"14 ","pages":"Article 100172"},"PeriodicalIF":13.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000106/pdfft?md5=9fe829b2f1a0245854798ffc7c7f513a&pid=1-s2.0-S2666792424000106-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The variability of solar photovoltaic (PV) power output, driven by rapidly changing cloud dynamics, hinders the transition to reliable renewable energy systems. Information on future sky conditions, especially cloud coverage, holds the promise for improving PV output forecasting. Leveraging recent advances in generative artificial intelligence (AI), we introduce SkyGPT, a physics-constrained stochastic video prediction model, which predicts plausible future images of the sky using historical sky images. We show that SkyGPT can accurately capture cloud dynamics, producing highly realistic and diverse future sky images. We further demonstrate its efficacy in 15-minute-ahead probabilistic PV output forecasting using real-world power generation data from a 30-kW rooftop PV system. By coupling SkyGPT with a U-Net-based PV power prediction model, we observe superior prediction reliability and sharpness compared with several benchmark methods. The propose approach achieves a continuous ranked probability score (CRPS) of 2.81 kW, outperforming a classic convolutional neural network (CNN) baseline by 13% and the smart persistence model by 23%. The findings of this research could aid efficient and resilient management of solar electricity generation, particularly as we transition to renewable-heavy grids. The study also provides valuable insights into stochastic cloud modeling for a broad research community, encompassing fields such as solar energy meteorology and atmospheric sciences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SkyGPT:利用来自物理约束 VideoGPT 的合成天空图像进行概率超短期太阳预报
受快速变化的云层动态影响,太阳能光伏(PV)发电量变化无常,阻碍了向可靠的可再生能源系统的过渡。有关未来天空条件的信息,尤其是云层覆盖率,有望改善光伏发电输出预测。利用生成式人工智能(AI)的最新进展,我们引入了 SkyGPT,这是一种物理约束随机视频预测模型,它能利用历史天空图像预测可信的未来天空图像。我们的研究表明,SkyGPT 可以准确捕捉云层动态,生成高度逼真和多样化的未来天空图像。我们还利用一个 30 千瓦屋顶光伏系统的实际发电数据,进一步证明了它在 15 分钟前概率光伏输出预测中的功效。通过将 SkyGPT 与基于 U-Net 的光伏功率预测模型相结合,我们观察到,与几种基准方法相比,SkyGPT 的预测可靠性和清晰度更胜一筹。所提出的方法实现了 2.81 kW 的连续排名概率得分(CRPS),比经典卷积神经网络(CNN)基线高出 13%,比智能持续模型高出 23%。这项研究的发现有助于高效、灵活地管理太阳能发电,尤其是在我们向可再生能源密集型电网过渡的时候。这项研究还为包括太阳能气象学和大气科学等领域在内的广大研究界提供了对随机云建模的宝贵见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1