Reinforcement learning for vehicle-to-grid: A review

IF 13.8 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2025-02-08 DOI:10.1016/j.adapen.2025.100214
Hongbin Xie , Ge Song , Zhuoran Shi , Jingyuan Zhang , Zhenjia Lin , Qing Yu , Hongdi Fu , Xuan Song , Haoran Zhang
{"title":"Reinforcement learning for vehicle-to-grid: A review","authors":"Hongbin Xie ,&nbsp;Ge Song ,&nbsp;Zhuoran Shi ,&nbsp;Jingyuan Zhang ,&nbsp;Zhenjia Lin ,&nbsp;Qing Yu ,&nbsp;Hongdi Fu ,&nbsp;Xuan Song ,&nbsp;Haoran Zhang","doi":"10.1016/j.adapen.2025.100214","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of Vehicle-to-Grid technology has played a crucial role in peak shaving and power scheduling within the power grid. However, with the random integration of a large number of electric vehicles into the grid, the uncertainty and complexity of the system have significantly increased, posing substantial challenges to traditional algorithms. Reinforcement learning has shown great potential in addressing these high-dimensional dynamic scheduling optimization problems. However, there is currently a lack of comprehensive analysis and systematic understanding of reinforcement learning applications in Vehicle-to-Grid, which limits the further development of this technology in the Vehicle-to-Grid domain. To this end, this review systematically analyzes the application of reinforcement learning in Vehicle-to-Grid from the perspective of different stakeholders, including the power grid, aggregators, and electric vehicle users, and clarifies the effectiveness and mechanisms of reinforcement learning in addressing the uncertainty in power scheduling. Based on a comprehensive review of the development trajectory of reinforcement learning in Vehicle-to-Grid applications, this paper proposes a structured framework for method classification and application analysis. It also highlights the major challenges currently faced by reinforcement learning in the Vehicle-to-Grid domain and provides targeted directions for future research. Through this systematic review of reinforcement learning applications in Vehicle-to-Grid, the paper aims to provide relevant references for subsequent studies.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100214"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of Vehicle-to-Grid technology has played a crucial role in peak shaving and power scheduling within the power grid. However, with the random integration of a large number of electric vehicles into the grid, the uncertainty and complexity of the system have significantly increased, posing substantial challenges to traditional algorithms. Reinforcement learning has shown great potential in addressing these high-dimensional dynamic scheduling optimization problems. However, there is currently a lack of comprehensive analysis and systematic understanding of reinforcement learning applications in Vehicle-to-Grid, which limits the further development of this technology in the Vehicle-to-Grid domain. To this end, this review systematically analyzes the application of reinforcement learning in Vehicle-to-Grid from the perspective of different stakeholders, including the power grid, aggregators, and electric vehicle users, and clarifies the effectiveness and mechanisms of reinforcement learning in addressing the uncertainty in power scheduling. Based on a comprehensive review of the development trajectory of reinforcement learning in Vehicle-to-Grid applications, this paper proposes a structured framework for method classification and application analysis. It also highlights the major challenges currently faced by reinforcement learning in the Vehicle-to-Grid domain and provides targeted directions for future research. Through this systematic review of reinforcement learning applications in Vehicle-to-Grid, the paper aims to provide relevant references for subsequent studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车辆到网格的强化学习:综述
车联网技术的迅速发展,对电网内的调峰和电力调度起到了至关重要的作用。然而,随着大量电动汽车随机入网,系统的不确定性和复杂性显著增加,对传统算法提出了重大挑战。强化学习在解决这些高维动态调度优化问题方面显示出巨大的潜力。然而,目前对强化学习在车到网格中的应用缺乏全面的分析和系统的认识,这限制了该技术在车到网格领域的进一步发展。为此,本文从电网、聚合器和电动汽车用户等不同利益相关者的角度系统分析了强化学习在车辆到电网中的应用,阐明了强化学习在解决电力调度不确定性方面的有效性和机制。在全面回顾车辆到网格应用中强化学习发展轨迹的基础上,提出了一种用于方法分类和应用分析的结构化框架。它还强调了目前强化学习在车辆到网格领域面临的主要挑战,并为未来的研究提供了有针对性的方向。本文通过对强化学习在Vehicle-to-Grid中的应用进行系统综述,旨在为后续研究提供相关参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
A RAG data pipeline transforming heterogeneous data into AI-ready format for autonomous building performance discovery Residential vehicle-to-grid profits under dynamic pricing: The role of real-world charging behavior Provincial CO2 emission peak and drivers in China based on near-real-time data Planning future charging infrastructure for private EVs: A city-scale assessment of demand and capacity Economics of electric vehicle corridor fast charging in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1