{"title":"Bioinspired planar switched beam network using Butler matrix on a flexible substrate targeting multifaceted millimeter-wave applications","authors":"Balaka Biswas, Ayan Karmakar","doi":"10.1017/s1759078724000400","DOIUrl":null,"url":null,"abstract":"<p>This paper details the design and development of a planar switched beam network using 4 × 4 Butler matrix (BM) over a thin and flexible type biocompatible substrate. Four mils thick liquid crystal polymer (LCP) is used as a substrate here (<span>ϵ</span><span>r</span> = 2.92, tan<span>δ</span> = 0.002). The proposed design is centered at 28 GHz, targeting commercial millimeter-wave applications. Floral-shaped antenna with defective ground structures has been implemented as basic radiating elements. The whole structure is based on microstrip line configuration. The architecture occupies an area of 23.85 × 19.20 mm<span>2</span> over the LCP substrate. Individual components of the BM are detailed here, followed by a system analysis of the whole integrated structure. The present work also covers the electrical equivalent circuit modeling of the whole beam-forming network. The fabricated prototype offers better than 18 dB return losses at each input port for the desired frequency band with 6 dBi (max.) peak gain and 500 MHz bandwidth around the center frequency. Port-to-port isolation of better than 15 dB is achieved with this topology. Experimental and simulated results are in good agreement in all aspects. A comparative study is also chalked out to highlight the significance of the current research work with respect to alike earlier reported structures.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000400","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper details the design and development of a planar switched beam network using 4 × 4 Butler matrix (BM) over a thin and flexible type biocompatible substrate. Four mils thick liquid crystal polymer (LCP) is used as a substrate here (ϵr = 2.92, tanδ = 0.002). The proposed design is centered at 28 GHz, targeting commercial millimeter-wave applications. Floral-shaped antenna with defective ground structures has been implemented as basic radiating elements. The whole structure is based on microstrip line configuration. The architecture occupies an area of 23.85 × 19.20 mm2 over the LCP substrate. Individual components of the BM are detailed here, followed by a system analysis of the whole integrated structure. The present work also covers the electrical equivalent circuit modeling of the whole beam-forming network. The fabricated prototype offers better than 18 dB return losses at each input port for the desired frequency band with 6 dBi (max.) peak gain and 500 MHz bandwidth around the center frequency. Port-to-port isolation of better than 15 dB is achieved with this topology. Experimental and simulated results are in good agreement in all aspects. A comparative study is also chalked out to highlight the significance of the current research work with respect to alike earlier reported structures.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.