{"title":"Privacy-preserving parametric inference for spatial autoregressive model","authors":"Zhijian Wang, Yunquan Song","doi":"10.1007/s11749-024-00928-8","DOIUrl":null,"url":null,"abstract":"<p>Spatial regression models are important tools in dealing with spatially dependent data and are widely used in many fields such as spatial econometric and regional science. When the spatial data contain sensitive information, the privacy of the data will be compromised along with the release of the analysis if appropriate privacy-preserving measures are not in place. In this paper, we study the privacy-preserving parametric inference for the spatial autoregressive model and propose corresponding differentially private algorithm. We construct a differentially private spatial autoregression framework that takes graph data into account. We improve the functional mechanism to be more accurate under the same degree of privacy protection. Theoretical analysis establishes both the privacy guarantees of the algorithm and the asymptotic normality of the estimation. Simulation and real data studies show improvements of our approach.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00928-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial regression models are important tools in dealing with spatially dependent data and are widely used in many fields such as spatial econometric and regional science. When the spatial data contain sensitive information, the privacy of the data will be compromised along with the release of the analysis if appropriate privacy-preserving measures are not in place. In this paper, we study the privacy-preserving parametric inference for the spatial autoregressive model and propose corresponding differentially private algorithm. We construct a differentially private spatial autoregression framework that takes graph data into account. We improve the functional mechanism to be more accurate under the same degree of privacy protection. Theoretical analysis establishes both the privacy guarantees of the algorithm and the asymptotic normality of the estimation. Simulation and real data studies show improvements of our approach.
期刊介绍:
TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal.
The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome.
One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.