{"title":"Bayesian inference and cure rate modeling for event history data","authors":"Panagiotis Papastamoulis, Fotios S. Milienos","doi":"10.1007/s11749-024-00942-w","DOIUrl":null,"url":null,"abstract":"<p>Estimating model parameters of a general family of cure models is always a challenging task mainly due to flatness and multimodality of the likelihood function. In this work, we propose a fully Bayesian approach in order to overcome these issues. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis–Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution. It is demonstrated that along the considered simulation study the proposed algorithm freely explores the multimodal posterior distribution and produces robust point estimates, while it outperforms maximum likelihood estimation via the Expectation–Maximization algorithm. A by-product of our Bayesian implementation is to control the False Discovery Rate when classifying items as cured or not. Finally, the proposed method is illustrated in a real dataset which refers to recidivism for offenders released from prison; the event of interest is whether the offender was re-incarcerated after probation or not.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"58 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00942-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating model parameters of a general family of cure models is always a challenging task mainly due to flatness and multimodality of the likelihood function. In this work, we propose a fully Bayesian approach in order to overcome these issues. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis–Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution. It is demonstrated that along the considered simulation study the proposed algorithm freely explores the multimodal posterior distribution and produces robust point estimates, while it outperforms maximum likelihood estimation via the Expectation–Maximization algorithm. A by-product of our Bayesian implementation is to control the False Discovery Rate when classifying items as cured or not. Finally, the proposed method is illustrated in a real dataset which refers to recidivism for offenders released from prison; the event of interest is whether the offender was re-incarcerated after probation or not.
期刊介绍:
TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal.
The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome.
One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.