Enhancing English Language Education Through Big Data Analytics and Generative AI

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Web Engineering Pub Date : 2024-03-01 DOI:10.13052/jwe1540-9589.2322
Jianhua Liu
{"title":"Enhancing English Language Education Through Big Data Analytics and Generative AI","authors":"Jianhua Liu","doi":"10.13052/jwe1540-9589.2322","DOIUrl":null,"url":null,"abstract":"This research paper provides a comprehensive examination of the significant impact of big data analytics and generative artificial intelligence (GAI) on the field of English language education. Utilizing a meticulous framework rooted in the evolutionary network influence of big data, our study critically analyzes several aspects of student engagement, learning motivation, self-efficacy, and the existing disparities among learners. Our primary objective is to enhance students' active participation, intrinsic interest, and self-confidence in the context of English language learning, thus advancing their overall linguistic competence. To achieve these objectives, our study systematically integrates the concept of practice education with a multidisciplinary approach, leveraging the power of big data analysis and GAI, and reveals profound insights into student learning behaviors, preferences, and personalized educational needs. We employ advanced techniques for meticulous data processing and interpretation, empowering educators to make data-informed decisions and tailor pedagogical strategies to meet the unique requirements of each student. This data-driven pedagogical approach not only facilitates the implementation of effective teaching methodologies but also effectively addresses the disparities stemming from diverse student backgrounds, thereby fostering a more inclusive and personalized learning environment.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 2","pages":"227-249"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10504108/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper provides a comprehensive examination of the significant impact of big data analytics and generative artificial intelligence (GAI) on the field of English language education. Utilizing a meticulous framework rooted in the evolutionary network influence of big data, our study critically analyzes several aspects of student engagement, learning motivation, self-efficacy, and the existing disparities among learners. Our primary objective is to enhance students' active participation, intrinsic interest, and self-confidence in the context of English language learning, thus advancing their overall linguistic competence. To achieve these objectives, our study systematically integrates the concept of practice education with a multidisciplinary approach, leveraging the power of big data analysis and GAI, and reveals profound insights into student learning behaviors, preferences, and personalized educational needs. We employ advanced techniques for meticulous data processing and interpretation, empowering educators to make data-informed decisions and tailor pedagogical strategies to meet the unique requirements of each student. This data-driven pedagogical approach not only facilitates the implementation of effective teaching methodologies but also effectively addresses the disparities stemming from diverse student backgrounds, thereby fostering a more inclusive and personalized learning environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过大数据分析和生成式人工智能加强英语教育
本研究论文全面探讨了大数据分析和生成式人工智能(GAI)对英语教育领域的重大影响。我们的研究利用植根于大数据进化网络影响的缜密框架,批判性地分析了学生参与、学习动机、自我效能感等几个方面,以及学习者之间存在的差异。我们的首要目标是提高学生在英语学习中的主动参与度、内在兴趣和自信心,从而提高他们的整体语言能力。为了实现这些目标,我们的研究系统地将实践教育理念与多学科方法相结合,利用大数据分析和 GAI 的力量,揭示了学生学习行为、偏好和个性化教育需求的深刻内涵。我们采用先进的技术对数据进行细致的处理和解读,使教育工作者能够根据数据做出决策,并根据每个学生的独特要求定制教学策略。这种以数据为导向的教学方法不仅有助于实施有效的教学方法,还能有效解决不同学生背景造成的差异,从而营造一个更具包容性和个性化的学习环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
期刊最新文献
Code Smell-Guided Prompting for LLM-Based Defect Prediction in Ansible Scripts Software Practice and Experience on Smart Mobility Digital Twin in Transportation and Automotive Industry: Toward SDV-Empowered Digital Twin Through EV Edge-Cloud and AutoML Privacy and Performance in Virtual Reality: The Advantages of Federated Learning in Collaborative Environments Efficient Machine Learning Systems in Edge Cloud Environments Overcoming Terrain Challenges with Edge Computing Solutions: Optimizing WSN Deployments Over Obstacle Clad-Irregular Terrains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1