Daniel Flores-Martin;Francisco Díaz-Barrancas;Pedro J. Pardo;Javier Berrocal;Juan M. Murillo
{"title":"Privacy and Performance in Virtual Reality: The Advantages of Federated Learning in Collaborative Environments","authors":"Daniel Flores-Martin;Francisco Díaz-Barrancas;Pedro J. Pardo;Javier Berrocal;Juan M. Murillo","doi":"10.13052/jwe1540-9589.2382","DOIUrl":null,"url":null,"abstract":"Federated Learning has emerged as a promising approach for maintaining data privacy across distributed environments, enabling training on a diverse range of devices from high-performance servers to low-power gadgets. Despite its potential, managing numerous data sources can strain these devices, particularly those with limited capabilities, leading to increased latency. This is especially critical in virtual reality, where real-time responsiveness is crucial due to the need for constant data connectivity. Historically, virtual reality systems have relied on tethered computer setups, restricting their flexibility and the benefits of wireless technology. However, recent advancements have enhanced the computational power of VR devices, allowing them to perform certain tasks independently. This work explores the feasibility of training a neural network on VR devices, using a federated learning approach, to develop a collaborative model aggregated and stored in the cloud. The goal is to assess the computational demands and explore the potential and constraints of leveraging VR devices for artificial intelligence applications.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 8","pages":"1085-1106"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10879173/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning has emerged as a promising approach for maintaining data privacy across distributed environments, enabling training on a diverse range of devices from high-performance servers to low-power gadgets. Despite its potential, managing numerous data sources can strain these devices, particularly those with limited capabilities, leading to increased latency. This is especially critical in virtual reality, where real-time responsiveness is crucial due to the need for constant data connectivity. Historically, virtual reality systems have relied on tethered computer setups, restricting their flexibility and the benefits of wireless technology. However, recent advancements have enhanced the computational power of VR devices, allowing them to perform certain tasks independently. This work explores the feasibility of training a neural network on VR devices, using a federated learning approach, to develop a collaborative model aggregated and stored in the cloud. The goal is to assess the computational demands and explore the potential and constraints of leveraging VR devices for artificial intelligence applications.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.