{"title":"Overcoming Terrain Challenges with Edge Computing Solutions: Optimizing WSN Deployments Over Obstacle Clad-Irregular Terrains","authors":"Shekhar Tyagi;Abhishek Srivastava","doi":"10.13052/jwe1540-9589.2384","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are primarily used for real time data collection and monitoring, especially in environments where direct human involvement is challenging due to harsh conditions. Optimized deployment of WSN nodes is a long standing issue and several ideas have been proposed to address this. Existing deployment strategies are mostly based on the assumption that the terrain for deployment of nodes is perfectly regular. This is an impractical assumption and in this paper we address this gap by proposing a deployment strategy for WSN nodes over irregular terrains. Such terrains comprise uneven elevations, morphology and vegetation based obstacles, rocky obstacles, and so on. Our approach comprises extraction of satellite images of the region of interest (RoI) from Google Earth and generating a KML file (Keyhole Markup Language) for the RoI containing the latitude, longitude, and elevation values of each and every point in the RoI. These points are used to generate a contour map of the RoI containing detailed terrain morphology. A radio frequency path loss model in combination with an advanced inverse distance weighted (IDW)-interpolation technique is proposed to ensure connectivity and coverage in such irregular terrains with varying nature of obstacles. The technique effectively detects occlusions and enables effective deployment. This edge computing approach involves real-time decision-making at the network edge (the sensor nodes) leading to a deterministic deployment of motes in diverse terrain conditions with various obstacles. The approach is compared with existing deployment techniques and the results validate its efficacy. To demonstrate the practicality of our approach, we have also implemented a deployment in real-world environmental conditions, validating our approach in challenging terrains.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 8","pages":"1127-1154"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10879109/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) are primarily used for real time data collection and monitoring, especially in environments where direct human involvement is challenging due to harsh conditions. Optimized deployment of WSN nodes is a long standing issue and several ideas have been proposed to address this. Existing deployment strategies are mostly based on the assumption that the terrain for deployment of nodes is perfectly regular. This is an impractical assumption and in this paper we address this gap by proposing a deployment strategy for WSN nodes over irregular terrains. Such terrains comprise uneven elevations, morphology and vegetation based obstacles, rocky obstacles, and so on. Our approach comprises extraction of satellite images of the region of interest (RoI) from Google Earth and generating a KML file (Keyhole Markup Language) for the RoI containing the latitude, longitude, and elevation values of each and every point in the RoI. These points are used to generate a contour map of the RoI containing detailed terrain morphology. A radio frequency path loss model in combination with an advanced inverse distance weighted (IDW)-interpolation technique is proposed to ensure connectivity and coverage in such irregular terrains with varying nature of obstacles. The technique effectively detects occlusions and enables effective deployment. This edge computing approach involves real-time decision-making at the network edge (the sensor nodes) leading to a deterministic deployment of motes in diverse terrain conditions with various obstacles. The approach is compared with existing deployment techniques and the results validate its efficacy. To demonstrate the practicality of our approach, we have also implemented a deployment in real-world environmental conditions, validating our approach in challenging terrains.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.