Software Practice and Experience on Smart Mobility Digital Twin in Transportation and Automotive Industry: Toward SDV-Empowered Digital Twin Through EV Edge-Cloud and AutoML
{"title":"Software Practice and Experience on Smart Mobility Digital Twin in Transportation and Automotive Industry: Toward SDV-Empowered Digital Twin Through EV Edge-Cloud and AutoML","authors":"Jonggu Kang","doi":"10.13052/jwe1540-9589.2385","DOIUrl":null,"url":null,"abstract":"A digital twin is a virtual representation of a physical asset that serves as a pivotal convergence technology that facilitates real-time prediction, optimization, monitoring, control, and improved decision-making. It can be widely applied to various domains, such as automotive, manufacturing, logistics, and smart cities. The automotive industry, in particular, is actively integrating digital twins throughout the product life cycle, from research and development, production, sales, and services to enhance the overall customer experience. This paper presents insights and lessons learned on software practice and experience related to implementing smart mobility digital twins, focusing on the potential of transportation digital twins built from data collected by electric vehicles (EVs) with EV edge cloud and automated machine learning (AutoML). Despite current limitations in data sufficiency, we forecast that, as the SDV trend accelerates and the adoption of EVs increases, the digital twin will become essential for the intelligent transportation system (ITS) in future smart cities, enabling accurate traffic predictions even in areas with limited road infrastructure. The successful integration of real-time data, high-performance prediction models, and automated service environments will enhance the effectiveness toward an SDV edge-empowered transportation digital twin.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 8","pages":"1155-1180"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10879108/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A digital twin is a virtual representation of a physical asset that serves as a pivotal convergence technology that facilitates real-time prediction, optimization, monitoring, control, and improved decision-making. It can be widely applied to various domains, such as automotive, manufacturing, logistics, and smart cities. The automotive industry, in particular, is actively integrating digital twins throughout the product life cycle, from research and development, production, sales, and services to enhance the overall customer experience. This paper presents insights and lessons learned on software practice and experience related to implementing smart mobility digital twins, focusing on the potential of transportation digital twins built from data collected by electric vehicles (EVs) with EV edge cloud and automated machine learning (AutoML). Despite current limitations in data sufficiency, we forecast that, as the SDV trend accelerates and the adoption of EVs increases, the digital twin will become essential for the intelligent transportation system (ITS) in future smart cities, enabling accurate traffic predictions even in areas with limited road infrastructure. The successful integration of real-time data, high-performance prediction models, and automated service environments will enhance the effectiveness toward an SDV edge-empowered transportation digital twin.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.