Music Curriculum Research Using a Large Language Model, Cloud Computing and Data Mining Technologies

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Web Engineering Pub Date : 2024-03-01 DOI:10.13052/jwe1540-9589.2323
Yuting Shang
{"title":"Music Curriculum Research Using a Large Language Model, Cloud Computing and Data Mining Technologies","authors":"Yuting Shang","doi":"10.13052/jwe1540-9589.2323","DOIUrl":null,"url":null,"abstract":"This paper presents a method to enhance the scientific nature of the music curriculum model by integrating a large language model, cloud computing and data mining technology for the analysis of the music teaching curriculum model. To maintain the integrity of the mixing matrix while employing the frequency hopping frequency, the paper suggests dividing the mixing matrix into a series of sub-matrices along the vertical time axis. This approach transforms wideband music signal processing into a narrowband processing problem. Additionally, two hybrid matrix estimation algorithms are proposed in this paper using underdetermined conditions. Furthermore, utilizing the estimated mixing matrix and the detected time-frequency support domain, the paper employs the subspace projection algorithm for underdetermined blind separation of music signals in the time-frequency domain. This procedure, along with the integration of the estimated direction of arrival (DoA), enables the completion of frequency-hopping network station music signal sorting. Extensive simulation teaching demonstrates that the music curriculum model proposed in this paper, based on a large language model, cloud computing and data mining technologies, significantly enhances the quality of modern music teaching.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 2","pages":"251-273"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10504109/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method to enhance the scientific nature of the music curriculum model by integrating a large language model, cloud computing and data mining technology for the analysis of the music teaching curriculum model. To maintain the integrity of the mixing matrix while employing the frequency hopping frequency, the paper suggests dividing the mixing matrix into a series of sub-matrices along the vertical time axis. This approach transforms wideband music signal processing into a narrowband processing problem. Additionally, two hybrid matrix estimation algorithms are proposed in this paper using underdetermined conditions. Furthermore, utilizing the estimated mixing matrix and the detected time-frequency support domain, the paper employs the subspace projection algorithm for underdetermined blind separation of music signals in the time-frequency domain. This procedure, along with the integration of the estimated direction of arrival (DoA), enables the completion of frequency-hopping network station music signal sorting. Extensive simulation teaching demonstrates that the music curriculum model proposed in this paper, based on a large language model, cloud computing and data mining technologies, significantly enhances the quality of modern music teaching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大语言模型、云计算和数据挖掘技术开展音乐课程研究
本文通过整合大语言模型、云计算和数据挖掘技术对音乐教学课程模型进行分析,提出了一种增强音乐课程模型科学性的方法。为了在采用跳频的同时保持混频矩阵的完整性,本文建议沿垂直时间轴将混频矩阵划分为一系列子矩阵。这种方法将宽带音乐信号处理转化为窄带处理问题。此外,本文还提出了两种使用欠定条件的混合矩阵估计算法。此外,利用估计的混合矩阵和检测到的时频支持域,本文采用子空间投影算法在时频域对音乐信号进行欠定盲分离。该程序与估计的到达方向(DoA)相结合,能够完成跳频网络电台音乐信号的分类。大量的仿真教学证明,本文提出的基于大语言模型、云计算和数据挖掘技术的音乐课程模型能显著提升现代音乐教学质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
期刊最新文献
Code Smell-Guided Prompting for LLM-Based Defect Prediction in Ansible Scripts Software Practice and Experience on Smart Mobility Digital Twin in Transportation and Automotive Industry: Toward SDV-Empowered Digital Twin Through EV Edge-Cloud and AutoML Privacy and Performance in Virtual Reality: The Advantages of Federated Learning in Collaborative Environments Efficient Machine Learning Systems in Edge Cloud Environments Overcoming Terrain Challenges with Edge Computing Solutions: Optimizing WSN Deployments Over Obstacle Clad-Irregular Terrains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1