{"title":"Simulation and analysis of 5G waveforms to reduce BER for vehicular communications","authors":"Fowzia Sultana Sowdagar , Krishna Naik Karamtot","doi":"10.1016/j.vehcom.2024.100777","DOIUrl":null,"url":null,"abstract":"<div><p>In today's rapidly evolving world, wireless communication has become a pervasive force, profoundly impacting various facets of our daily lives. Wireless Vehicular Networks stand out as a captivating realm of research, with a key focus on fostering information exchange among autonomous vehicles. As researchers witness surging demand in this domain, there is a growing emphasis on devising advanced techniques to augment network performance, particularly within the context of Fifth-generation (5G) applications, such as vehicular communication. The concept of Vehicle-to-vehicle (V2V) communications is poised to play a pivotal role in the future, presenting formidable challenges for the air interface by accommodating asynchronous multiple access and high mobility. Within this dynamic landscape, security and privacy issues loom large for 5G-enabled vehicle networks, many of which remain largely unexplored. The conventional waveforms, including Orthogonal Frequency Division Multiplexing (OFDM), may fall short of meeting these evolving standards. In this paper, authors delve into a comparative exploration of two waveform families, namely Filter Bank Multicarrier (FBMC) and Universal Filtered Multi-Carrier (UFMC), concerning their design and performance trade-offs. authors also examine their compatibility with various digital modulation schemes like 4-Quadrature Amplitude Modulation (QAM), 16-QAM, Offset Quadrature Phase Shift Keying (OQPSK), and Shaped offset OQPSK (SOQPSK). Through MATLAB simulations, our research vividly demonstrates the superior performance of UFMC when juxtaposed with OFDM and FBMC, especially concerning Bit Error Rate (BER) in both Rayleigh and Nakagami fading channels. In particular, authors consider a Nakagami shape parameter of 10, which yields a remarkable minimum BER for UFMC.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000524","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In today's rapidly evolving world, wireless communication has become a pervasive force, profoundly impacting various facets of our daily lives. Wireless Vehicular Networks stand out as a captivating realm of research, with a key focus on fostering information exchange among autonomous vehicles. As researchers witness surging demand in this domain, there is a growing emphasis on devising advanced techniques to augment network performance, particularly within the context of Fifth-generation (5G) applications, such as vehicular communication. The concept of Vehicle-to-vehicle (V2V) communications is poised to play a pivotal role in the future, presenting formidable challenges for the air interface by accommodating asynchronous multiple access and high mobility. Within this dynamic landscape, security and privacy issues loom large for 5G-enabled vehicle networks, many of which remain largely unexplored. The conventional waveforms, including Orthogonal Frequency Division Multiplexing (OFDM), may fall short of meeting these evolving standards. In this paper, authors delve into a comparative exploration of two waveform families, namely Filter Bank Multicarrier (FBMC) and Universal Filtered Multi-Carrier (UFMC), concerning their design and performance trade-offs. authors also examine their compatibility with various digital modulation schemes like 4-Quadrature Amplitude Modulation (QAM), 16-QAM, Offset Quadrature Phase Shift Keying (OQPSK), and Shaped offset OQPSK (SOQPSK). Through MATLAB simulations, our research vividly demonstrates the superior performance of UFMC when juxtaposed with OFDM and FBMC, especially concerning Bit Error Rate (BER) in both Rayleigh and Nakagami fading channels. In particular, authors consider a Nakagami shape parameter of 10, which yields a remarkable minimum BER for UFMC.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.