{"title":"High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate","authors":"Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen","doi":"10.1088/2752-5724/ad3a83","DOIUrl":null,"url":null,"abstract":"\n The performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80,000 cd m-2, respectively. However, the inferior performance of the green InP-based device hinders the commercialization of full-color Cd-free QLED technology. The ease of oxidation of the highly reactive InP cores leads to high non-radiative recombination and poor photoluminescence quantum yield (PL QY) of the InP-based core/shell quantum dots (QDs), limiting the performance of the relevant QLEDs. Here, we proposed a fluoride-free synthesis strategy to in-situ passivate the InP cores, in which zinc myristate reacted with phosphine dangling bonds to form Zn-P protective layer and protect InP cores from the water and oxygen in the environment. The resultant InP/ZnSe/ZnS core/shell QDs demonstrated a high PL QY of 91%. The corresponding green-emitting electroluminescence devices exhibited a maximum EQE of 12.74%, along with a luminance of over 175,000 cd m-2 and a long T50@100 cd m-2 lifetime of over 20,000 h.","PeriodicalId":500817,"journal":{"name":"Materials futures","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials futures","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1088/2752-5724/ad3a83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80,000 cd m-2, respectively. However, the inferior performance of the green InP-based device hinders the commercialization of full-color Cd-free QLED technology. The ease of oxidation of the highly reactive InP cores leads to high non-radiative recombination and poor photoluminescence quantum yield (PL QY) of the InP-based core/shell quantum dots (QDs), limiting the performance of the relevant QLEDs. Here, we proposed a fluoride-free synthesis strategy to in-situ passivate the InP cores, in which zinc myristate reacted with phosphine dangling bonds to form Zn-P protective layer and protect InP cores from the water and oxygen in the environment. The resultant InP/ZnSe/ZnS core/shell QDs demonstrated a high PL QY of 91%. The corresponding green-emitting electroluminescence devices exhibited a maximum EQE of 12.74%, along with a luminance of over 175,000 cd m-2 and a long T50@100 cd m-2 lifetime of over 20,000 h.