Devica Natalia Br Ginting, P. Wicaksono, N. M. Farda
{"title":"Mapping Seagrass Percent Cover And Biomass In Nusa Lembongan, Bali, Indonesia","authors":"Devica Natalia Br Ginting, P. Wicaksono, N. M. Farda","doi":"10.24057/2071-9388-2023-2886","DOIUrl":null,"url":null,"abstract":"Seagrass meadow is one of the blue-carbon ecosystems capable of absorbing and storing carbon more effectively in the bodies and sediments than terrestrial ecosystems. However, nationwide data on its carbon stock remains elusive due to limitations and challenges in data collection and mapping. Seagrass percent cover and biomass, which were closely related with above-ground carbon stock, can be effectively mapped and monitored using remote sensing techniques. Therefore, this study aimed to compare the accuracy of 4 scenarios as well as assess the performance of random forest and stepwise regression methods, for mapping seagrass percent cover and biomass in Nusa Lembongan, Bali, Indonesia. The scenarios were experimented using only atmospherically corrected images, sunglint, water, as well as sunglint and water column corrected images. Furthermore, WorldView-3 images and in-situ seagrass data were used, with the image corrected by applying the scenarios. Random forest and stepwise regression methods were adopted for mapping and modelling. The optimum mapping scenario and method were chosen based on R2, RMSE, and seagrass spatial distribution. The results show that the atmospherically corrected image produced the best seagrass percent cover and biomass map. Range of R2 using random forest and stepwise regression model was 0.49–0.64 and 0.50–0.58, with RMSE ranging from 18.50% to 21.41% and 19.36% to 20.72%, respectively. Based on R2, RMSE, and seagrass spatial distribution, it was concluded that the random forest model produced better mapping results, specifically for areas with high seagrass percent cover.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":"162 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2023-2886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Seagrass meadow is one of the blue-carbon ecosystems capable of absorbing and storing carbon more effectively in the bodies and sediments than terrestrial ecosystems. However, nationwide data on its carbon stock remains elusive due to limitations and challenges in data collection and mapping. Seagrass percent cover and biomass, which were closely related with above-ground carbon stock, can be effectively mapped and monitored using remote sensing techniques. Therefore, this study aimed to compare the accuracy of 4 scenarios as well as assess the performance of random forest and stepwise regression methods, for mapping seagrass percent cover and biomass in Nusa Lembongan, Bali, Indonesia. The scenarios were experimented using only atmospherically corrected images, sunglint, water, as well as sunglint and water column corrected images. Furthermore, WorldView-3 images and in-situ seagrass data were used, with the image corrected by applying the scenarios. Random forest and stepwise regression methods were adopted for mapping and modelling. The optimum mapping scenario and method were chosen based on R2, RMSE, and seagrass spatial distribution. The results show that the atmospherically corrected image produced the best seagrass percent cover and biomass map. Range of R2 using random forest and stepwise regression model was 0.49–0.64 and 0.50–0.58, with RMSE ranging from 18.50% to 21.41% and 19.36% to 20.72%, respectively. Based on R2, RMSE, and seagrass spatial distribution, it was concluded that the random forest model produced better mapping results, specifically for areas with high seagrass percent cover.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.