Peng Lu , Ning Zhang , Lin Ye , Ershun Du , Chongqing Kang
{"title":"Advances in model predictive control for large-scale wind power integration in power systems","authors":"Peng Lu , Ning Zhang , Lin Ye , Ershun Du , Chongqing Kang","doi":"10.1016/j.adapen.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Wind power exhibits low controllability and is situated in dispersed geographical locations, presenting complex coupling and aggregation characteristics in both temporal and spatial dimensions. When large-scale wind power is integrated into the power grid, it will bring a significant technical challenge: the highly variable nature of wind power poses a threat to the safe and stable control of the power, frequency, and voltage in the power system. Simultaneously, the model predictive control (MPC) technology provides more opportunities for investigating control issues related to large-scale wind power integration in power systems. This paper provides a timely and systematic overview of the applications of MPC in the field of wind power for the first time, innovatively embedding MPC technology into multi-level (e.g., wind turbines, wind farms, wind power cluster, and power grids) and multi-objective (e.g., power, frequency, and voltage) control. Firstly, the basic concept and classification criteria of MPC are developed, and the available modeling methods in wind power are carefully compared. Secondly, the application scenarios of MPC in multi-level and multi-objective wind power control are summarized. Finally, how to use a variety of optimization algorithms to solve these models is discussed. Based on the broad review above, we summarize several key scientific issues related to predictive control and discuss the challenges and future development directions in detail. This paper details the role of MPC technology in multi-level and multi-objective control within the wind power sector, aiming to help engineers and scientists understand its substantial potential in wind power integration in power systems.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"14 ","pages":"Article 100177"},"PeriodicalIF":13.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000155/pdfft?md5=8da5ee9be84dc66a46cbd485ccbef1b0&pid=1-s2.0-S2666792424000155-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Wind power exhibits low controllability and is situated in dispersed geographical locations, presenting complex coupling and aggregation characteristics in both temporal and spatial dimensions. When large-scale wind power is integrated into the power grid, it will bring a significant technical challenge: the highly variable nature of wind power poses a threat to the safe and stable control of the power, frequency, and voltage in the power system. Simultaneously, the model predictive control (MPC) technology provides more opportunities for investigating control issues related to large-scale wind power integration in power systems. This paper provides a timely and systematic overview of the applications of MPC in the field of wind power for the first time, innovatively embedding MPC technology into multi-level (e.g., wind turbines, wind farms, wind power cluster, and power grids) and multi-objective (e.g., power, frequency, and voltage) control. Firstly, the basic concept and classification criteria of MPC are developed, and the available modeling methods in wind power are carefully compared. Secondly, the application scenarios of MPC in multi-level and multi-objective wind power control are summarized. Finally, how to use a variety of optimization algorithms to solve these models is discussed. Based on the broad review above, we summarize several key scientific issues related to predictive control and discuss the challenges and future development directions in detail. This paper details the role of MPC technology in multi-level and multi-objective control within the wind power sector, aiming to help engineers and scientists understand its substantial potential in wind power integration in power systems.