Zhonghong Du, Xiaohui Zhang, Peiyu Qin, Yurong Pu, Xiaoli Xi
{"title":"Introduction of the orthogonal mode via the polarization conversion parasitic structure for the isolation enhancement of MIMO patch antennas","authors":"Zhonghong Du, Xiaohui Zhang, Peiyu Qin, Yurong Pu, Xiaoli Xi","doi":"10.1017/s1759078724000461","DOIUrl":null,"url":null,"abstract":"In this study, a high-isolation multiple-input multiple-output (MIMO) microstrip patch antenna (MPA), which utilizes an orthogonal mode cancellation method is proposed. This method employs TM<jats:sub>10</jats:sub> and TM<jats:sub>01</jats:sub> modes, which are simultaneously excited in the rectangular passive MPA. Initially, a rectangular decoupling structure featuring polarization rotation characteristics is designed. Further studies show that by loading the polarization conversion parasitic structure (PCPS), the electric field of the spatial coupling wave can be transformed from the <jats:italic>x</jats:italic>-polarized TM<jats:sub>10</jats:sub> mode to the <jats:italic>y</jats:italic>-polarized TM<jats:sub>01</jats:sub> mode. Therefore, TM<jats:sub>10</jats:sub> and TM<jats:sub>01</jats:sub> modes from the excited antenna and decoupling structure are concurrently coupled to the passive antenna, forming an evident weak-field region on the passive antenna. Placing the feeding probe of the passive MPA within the weak-field region prevents signal reception at the port. Consequently, this results in an extremely low mutual coupling of −49 dB at a resonant frequency of 5.8 GHz. Finally, a prototype of the proposed antenna is fabricated and tested, and the measured results closely match the simulated results. Additionally, it is observed that PCPS slightly influences the performance of the MIMO antenna.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000461","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a high-isolation multiple-input multiple-output (MIMO) microstrip patch antenna (MPA), which utilizes an orthogonal mode cancellation method is proposed. This method employs TM10 and TM01 modes, which are simultaneously excited in the rectangular passive MPA. Initially, a rectangular decoupling structure featuring polarization rotation characteristics is designed. Further studies show that by loading the polarization conversion parasitic structure (PCPS), the electric field of the spatial coupling wave can be transformed from the x-polarized TM10 mode to the y-polarized TM01 mode. Therefore, TM10 and TM01 modes from the excited antenna and decoupling structure are concurrently coupled to the passive antenna, forming an evident weak-field region on the passive antenna. Placing the feeding probe of the passive MPA within the weak-field region prevents signal reception at the port. Consequently, this results in an extremely low mutual coupling of −49 dB at a resonant frequency of 5.8 GHz. Finally, a prototype of the proposed antenna is fabricated and tested, and the measured results closely match the simulated results. Additionally, it is observed that PCPS slightly influences the performance of the MIMO antenna.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.