Yuanhao He, Geyang Xiao, Jun Zhu, Tao Zou, Yuan Liang
{"title":"Reinforcement learning-based SDN routing scheme empowered by causality detection and GNN","authors":"Yuanhao He, Geyang Xiao, Jun Zhu, Tao Zou, Yuan Liang","doi":"10.3389/fncom.2024.1393025","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid development of network applications and the increasing demand for high-quality network service, quality-of-service (QoS) routing has emerged as a critical network technology. The application of machine learning techniques, particularly reinforcement learning and graph neural network, has garnered significant attention in addressing this problem. However, existing reinforcement learning methods lack research on the causal impact of agent actions on the interactive environment, and graph neural network fail to effectively represent link features, which are pivotal for routing optimization. Therefore, this study quantifies the causal influence between the intelligent agent and the interactive environment based on causal inference techniques, aiming to guide the intelligent agent in improving the efficiency of exploring the action space. Simultaneously, graph neural network is employed to embed node and link features, and a reward function is designed that comprehensively considers network performance metrics and causality relevance. A centralized reinforcement learning method is proposed to effectively achieve QoS-aware routing in Software-Defined Networking (SDN). Finally, experiments are conducted in a network simulation environment, and metrics such as packet loss, delay, and throughput all outperform the baseline.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1393025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the rapid development of network applications and the increasing demand for high-quality network service, quality-of-service (QoS) routing has emerged as a critical network technology. The application of machine learning techniques, particularly reinforcement learning and graph neural network, has garnered significant attention in addressing this problem. However, existing reinforcement learning methods lack research on the causal impact of agent actions on the interactive environment, and graph neural network fail to effectively represent link features, which are pivotal for routing optimization. Therefore, this study quantifies the causal influence between the intelligent agent and the interactive environment based on causal inference techniques, aiming to guide the intelligent agent in improving the efficiency of exploring the action space. Simultaneously, graph neural network is employed to embed node and link features, and a reward function is designed that comprehensively considers network performance metrics and causality relevance. A centralized reinforcement learning method is proposed to effectively achieve QoS-aware routing in Software-Defined Networking (SDN). Finally, experiments are conducted in a network simulation environment, and metrics such as packet loss, delay, and throughput all outperform the baseline.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro