Oliver Anton, Victoria A Henderson, Elisa Da Ros, Ivan Sekulic, Sven Burger, Philipp-Immanuel Schneider and Markus Krutzik
{"title":"Review and experimental benchmarking of machine learning algorithms for efficient optimization of cold atom experiments","authors":"Oliver Anton, Victoria A Henderson, Elisa Da Ros, Ivan Sekulic, Sven Burger, Philipp-Immanuel Schneider and Markus Krutzik","doi":"10.1088/2632-2153/ad3cb6","DOIUrl":null,"url":null,"abstract":"The generation of cold atom clouds is a complex process which involves the optimization of noisy data in high dimensional parameter spaces. Optimization can be challenging both in and especially outside of the lab due to lack of time, expertise, or access for lengthy manual optimization. In recent years, it was demonstrated that machine learning offers a solution since it can optimize high dimensional problems quickly, without knowledge of the experiment itself. In this paper we present results showing the benchmarking of nine different optimization techniques and implementations, alongside their ability to optimize a rubidium (Rb) cold atom experiment. The investigations are performed on a 3D 87Rb molasses with 10 and 18 adjustable parameters, respectively, where the atom number obtained by absorption imaging was chosen as the test problem. We further compare the best performing optimizers under different effective noise conditions by reducing the signal-to-noise ratio of the images via adapting the atomic vapor pressure in the 2D+ magneto-optical trap and the detection laser frequency stability.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad3cb6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of cold atom clouds is a complex process which involves the optimization of noisy data in high dimensional parameter spaces. Optimization can be challenging both in and especially outside of the lab due to lack of time, expertise, or access for lengthy manual optimization. In recent years, it was demonstrated that machine learning offers a solution since it can optimize high dimensional problems quickly, without knowledge of the experiment itself. In this paper we present results showing the benchmarking of nine different optimization techniques and implementations, alongside their ability to optimize a rubidium (Rb) cold atom experiment. The investigations are performed on a 3D 87Rb molasses with 10 and 18 adjustable parameters, respectively, where the atom number obtained by absorption imaging was chosen as the test problem. We further compare the best performing optimizers under different effective noise conditions by reducing the signal-to-noise ratio of the images via adapting the atomic vapor pressure in the 2D+ magneto-optical trap and the detection laser frequency stability.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.