Equivariant tensor network potentials

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-09-18 DOI:10.1088/2632-2153/ad79b5
M Hodapp and A Shapeev
{"title":"Equivariant tensor network potentials","authors":"M Hodapp and A Shapeev","doi":"10.1088/2632-2153/ad79b5","DOIUrl":null,"url":null,"abstract":"Machine-learning interatomic potentials (MLIPs) have made a significant contribution to the recent progress in the fields of computational materials and chemistry due to the MLIPs’ ability of accurately approximating energy landscapes of quantum-mechanical models while being orders of magnitude more computationally efficient. However, the computational cost and number of parameters of many state-of-the-art MLIPs increases exponentially with the number of atomic features. Tensor (non-neural) networks, based on low-rank representations of high-dimensional tensors, have been a way to reduce the number of parameters in approximating multidimensional functions, however, it is often not easy to encode the model symmetries into them. In this work we develop a formalism for rank-efficient equivariant tensor networks (ETNs), i.e. tensor networks that remain invariant under actions of SO(3) upon contraction. All the key algorithms of tensor networks like orthogonalization of cores and DMRG-based algorithms carry over to our equivariant case. Moreover, we show that many elements of modern neural network architectures like message passing, pulling, or attention mechanisms, can in some form be implemented into the ETNs. Based on ETNs, we develop a new class of polynomial-based MLIPs that demonstrate superior performance over existing MLIPs for multicomponent systems.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad79b5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learning interatomic potentials (MLIPs) have made a significant contribution to the recent progress in the fields of computational materials and chemistry due to the MLIPs’ ability of accurately approximating energy landscapes of quantum-mechanical models while being orders of magnitude more computationally efficient. However, the computational cost and number of parameters of many state-of-the-art MLIPs increases exponentially with the number of atomic features. Tensor (non-neural) networks, based on low-rank representations of high-dimensional tensors, have been a way to reduce the number of parameters in approximating multidimensional functions, however, it is often not easy to encode the model symmetries into them. In this work we develop a formalism for rank-efficient equivariant tensor networks (ETNs), i.e. tensor networks that remain invariant under actions of SO(3) upon contraction. All the key algorithms of tensor networks like orthogonalization of cores and DMRG-based algorithms carry over to our equivariant case. Moreover, we show that many elements of modern neural network architectures like message passing, pulling, or attention mechanisms, can in some form be implemented into the ETNs. Based on ETNs, we develop a new class of polynomial-based MLIPs that demonstrate superior performance over existing MLIPs for multicomponent systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等变张量网络势
机器学习原子间势(MLIPs)能够精确逼近量子力学模型的能量景观,同时计算效率高达数个数量级,因此为计算材料和化学领域的最新进展做出了重大贡献。然而,许多最先进的 MLIPs 的计算成本和参数数量会随着原子特征数量的增加而呈指数增长。基于高维张量的低秩表示的张量(非神经)网络,一直是减少近似多维函数参数数量的一种方法,然而,将模型对称性编码到张量(非神经)网络中往往并不容易。在这项工作中,我们开发了一种秩效等变张量网络(ETN)的形式主义,即在收缩时保持 SO(3) 作用不变的张量网络。张量网络的所有关键算法,如核的正交化和基于 DMRG 的算法,都适用于我们的等变情况。此外,我们还展示了现代神经网络架构的许多元素,如消息传递、牵引或注意力机制,都可以以某种形式在 ETN 中实现。在 ETN 的基础上,我们开发了一类新的基于多项式的 MLIP,与现有的多分量系统 MLIP 相比,表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1