A Wi-Fi RSS-RTT Indoor Positioning Model Based on Dynamic Model Switching Algorithm

Xu Feng;Khuong An Nguyen;Zhiyuan Luo
{"title":"A Wi-Fi RSS-RTT Indoor Positioning Model Based on Dynamic Model Switching Algorithm","authors":"Xu Feng;Khuong An Nguyen;Zhiyuan Luo","doi":"10.1109/JISPIN.2024.3385356","DOIUrl":null,"url":null,"abstract":"The advances in Wi-Fi technology have encouraged the development of numerous indoor positioning systems. However, their performance varies significantly across different indoor environments, making it challenging to identify the most suitable system for all scenarios. To address this challenge, we propose an algorithm that dynamically selects the most optimal Wi-Fi positioning model for each location. Our algorithm employs a machine learning weighted model selection algorithm trained on raw Wi-Fi received signal strength (RSS), raw Wi-Fi round-trip time (RTT) data, statistical RSS and RTT measures, and access point line-of-sight information. We tested our algorithm in four complex indoor environments, and compared its performance to traditional Wi-Fi indoor positioning models and state-of-the-art stacking models, demonstrating an improvement of up to 1.8 m on average.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"151-165"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10493073/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advances in Wi-Fi technology have encouraged the development of numerous indoor positioning systems. However, their performance varies significantly across different indoor environments, making it challenging to identify the most suitable system for all scenarios. To address this challenge, we propose an algorithm that dynamically selects the most optimal Wi-Fi positioning model for each location. Our algorithm employs a machine learning weighted model selection algorithm trained on raw Wi-Fi received signal strength (RSS), raw Wi-Fi round-trip time (RTT) data, statistical RSS and RTT measures, and access point line-of-sight information. We tested our algorithm in four complex indoor environments, and compared its performance to traditional Wi-Fi indoor positioning models and state-of-the-art stacking models, demonstrating an improvement of up to 1.8 m on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态模型切换算法的 Wi-Fi RSS-RTT 室内定位模型
Wi-Fi 技术的进步促进了众多室内定位系统的发展。然而,这些系统在不同室内环境中的性能差异很大,因此要为所有场景找出最合适的系统具有挑战性。为了应对这一挑战,我们提出了一种算法,可为每个地点动态选择最优的 Wi-Fi 定位模型。我们的算法采用了一种机器学习加权模型选择算法,该算法根据原始 Wi-Fi 接收信号强度(RSS)、原始 Wi-Fi 回程时间(RTT)数据、RSS 和 RTT 统计量以及接入点视距信息进行训练。我们在四个复杂的室内环境中测试了我们的算法,并将其性能与传统的 Wi-Fi 室内定位模型和最先进的堆叠模型进行了比较,结果表明平均可提高 1.8 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal of Indoor and Seamless Positioning and Navigation Vol. 2 Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1