RSSI-Based Passive Localization in the Wild, At Streetscape Scales

Fanchen Bao;Stepan Mazokha;Jason O. Hallstrom
{"title":"RSSI-Based Passive Localization in the Wild, At Streetscape Scales","authors":"Fanchen Bao;Stepan Mazokha;Jason O. Hallstrom","doi":"10.1109/JISPIN.2025.3534200","DOIUrl":null,"url":null,"abstract":"Pedestrian mobility data is valuable to data-driven decision-making for city planning, emergency response, and more. Thanks to the ubiquity of Wi–Fi-enabled devices, pedestrians may be colocalized with their devices using Received Signal Strength Indicator (RSSI) measurements from Wi–Fi probe requests, passively and privately. While shown to be feasible in controlled outdoor environments, few have used this method outdoors in production environments. In this article, we continue the work on the Mobility Intelligence System (MobIntel) and apply RSSI-based passive localization on data collected from the 500 and 400 blocks of Clematis Street in West Palm Beach, FL. We present an open-source dataset used in our study, which, to the best of our knowledge, is the first public Wi–Fi RSSI dataset for localization purposes in an outdoor environment. We then introduce a three-stage localization model that first classifies a test sample to a city block, followed by a sidewalk within the city block, and ends with an estimation of x-coordinate within the sidewalk. While we formulate the problem and validate our solution within an outdoor context, the work is equally applicable to large indoor environments. It achieves a mean localization error of 3.16 and 4.21 m, with 73% and 66% chance of reaching an error <inline-formula><tex-math>$\\le$</tex-math></inline-formula>4 m, and 17% and 21% of the data discarded due to poor quality in the 500 and 400 block, respectively. We also highlight the challenges when dealing with real-world RSSI data, analyze the model's tolerance to missing data, and propose solutions to improve localization performance.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"3 ","pages":"13-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854656","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854656/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian mobility data is valuable to data-driven decision-making for city planning, emergency response, and more. Thanks to the ubiquity of Wi–Fi-enabled devices, pedestrians may be colocalized with their devices using Received Signal Strength Indicator (RSSI) measurements from Wi–Fi probe requests, passively and privately. While shown to be feasible in controlled outdoor environments, few have used this method outdoors in production environments. In this article, we continue the work on the Mobility Intelligence System (MobIntel) and apply RSSI-based passive localization on data collected from the 500 and 400 blocks of Clematis Street in West Palm Beach, FL. We present an open-source dataset used in our study, which, to the best of our knowledge, is the first public Wi–Fi RSSI dataset for localization purposes in an outdoor environment. We then introduce a three-stage localization model that first classifies a test sample to a city block, followed by a sidewalk within the city block, and ends with an estimation of x-coordinate within the sidewalk. While we formulate the problem and validate our solution within an outdoor context, the work is equally applicable to large indoor environments. It achieves a mean localization error of 3.16 and 4.21 m, with 73% and 66% chance of reaching an error $\le$4 m, and 17% and 21% of the data discarded due to poor quality in the 500 and 400 block, respectively. We also highlight the challenges when dealing with real-world RSSI data, analyze the model's tolerance to missing data, and propose solutions to improve localization performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation Front Cover RSSI-Based Passive Localization in the Wild, At Streetscape Scales 2024 Index IEEE Journal of Indoor and Seamless Positioning and Navigation Vol. 2 Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1