Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation

Eudald Sangenis;Chi-Shih Jao;Andrei M. Shkel
{"title":"Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation","authors":"Eudald Sangenis;Chi-Shih Jao;Andrei M. Shkel","doi":"10.1109/JISPIN.2025.3536396","DOIUrl":null,"url":null,"abstract":"In this article, we propose an approach to enhance zero-velocity-update (ZUPT)-aided inertial navigation systems (INSs) with a time series support vector machine (SVM) forecaster algorithm. The approach is based on the inclusion in ZUPT algorithm the time correlation of velocity threshold values based on classification of 19 distinct pedestrian activities determined from a foot-mounted inertial measurement unit. The classification enhances the traditional ZUPT-aided INS by first optimizing the threshold in the detector called stance hypothesis optimal detection and second adjusting zero-velocity measurement variances for each categorized locomotion type. Experimental validation involved three subjects, each conducting 10 trials of indoor navigation, encompassing activities, such as walking, fast walking, jogging, running, sprinting, walking backward, jogging backward, and sidestepping, over a nearly 100 [m] path. The trained time series SVM classifier achieved a 90.04% average classification accuracy, resulting in an improvement in navigation accuracy by a factor of 250 as compared to a standalone INS and by a factor of 3 as compared to a traditional ZUPT-aided INS solution. Comparable improvements in the vertical drift of the navigation solution have been also demonstrated.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"3 ","pages":"32-42"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858374","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858374/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose an approach to enhance zero-velocity-update (ZUPT)-aided inertial navigation systems (INSs) with a time series support vector machine (SVM) forecaster algorithm. The approach is based on the inclusion in ZUPT algorithm the time correlation of velocity threshold values based on classification of 19 distinct pedestrian activities determined from a foot-mounted inertial measurement unit. The classification enhances the traditional ZUPT-aided INS by first optimizing the threshold in the detector called stance hypothesis optimal detection and second adjusting zero-velocity measurement variances for each categorized locomotion type. Experimental validation involved three subjects, each conducting 10 trials of indoor navigation, encompassing activities, such as walking, fast walking, jogging, running, sprinting, walking backward, jogging backward, and sidestepping, over a nearly 100 [m] path. The trained time series SVM classifier achieved a 90.04% average classification accuracy, resulting in an improvement in navigation accuracy by a factor of 250 as compared to a standalone INS and by a factor of 3 as compared to a traditional ZUPT-aided INS solution. Comparable improvements in the vertical drift of the navigation solution have been also demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation Front Cover RSSI-Based Passive Localization in the Wild, At Streetscape Scales 2024 Index IEEE Journal of Indoor and Seamless Positioning and Navigation Vol. 2 Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1