{"title":"A review of challenges, algorithms and evaluation methods in news recommendation","authors":"Somnath Bhattacharya, Shankar Prawesh","doi":"10.1177/01655515241244497","DOIUrl":null,"url":null,"abstract":"News reading is an important social activity and to help readers quickly find news articles of their interest, news content providers and aggregators use recommender systems. Such systems are designed to address a variety of challenges. Inspiration for algorithmic design is taken from various domains which has resulted in the creation of an enormous body of literature. Also, different methods are used for evaluation of the recommendation algorithms. In this study, we review these developments and present three major components in news recommendation research. First, we list and categorise the challenges faced while designing news recommender systems. We especially list the different algorithmic designs used for generating personalised and non-personalised recommendations. We discuss the major neural network architectures that are being increasingly used for both collaborative and content-based recommender systems. Next, we list the two major evaluation methods and also list some popular datasets used in evaluation. Finally, we identify the emerging trends in news recommender research. We find that the issues related to fake news, trust and use of personal data for news recommendation are gaining wider attention, and deep learning methods are being increasingly used to address these issues.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515241244497","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
News reading is an important social activity and to help readers quickly find news articles of their interest, news content providers and aggregators use recommender systems. Such systems are designed to address a variety of challenges. Inspiration for algorithmic design is taken from various domains which has resulted in the creation of an enormous body of literature. Also, different methods are used for evaluation of the recommendation algorithms. In this study, we review these developments and present three major components in news recommendation research. First, we list and categorise the challenges faced while designing news recommender systems. We especially list the different algorithmic designs used for generating personalised and non-personalised recommendations. We discuss the major neural network architectures that are being increasingly used for both collaborative and content-based recommender systems. Next, we list the two major evaluation methods and also list some popular datasets used in evaluation. Finally, we identify the emerging trends in news recommender research. We find that the issues related to fake news, trust and use of personal data for news recommendation are gaining wider attention, and deep learning methods are being increasingly used to address these issues.
期刊介绍:
The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.