{"title":"Government chatbot: Empowering smart conversations with enhanced contextual understanding and reasoning","authors":"Zhixuan Lian, Fang Wang","doi":"10.1177/01655515241268863","DOIUrl":null,"url":null,"abstract":"Currently, an increasing number of governments have adopted question answering systems (QASs) in public service delivery. As some citizens with limited information literacy often express their questions vaguely when interacting with a chatbot, it is necessary to improve the contextual understanding and reasoning ability of government chatbots (G-chatbots). This goal can be achieved through the optimisation of the matching between question, answer and context. By incorporating the Relational Graph Convolutional Networks (R-GCNs) and fuzzy logic, this study proposes a multi-turn dialogue model that introduces a re-question mechanism and a subgraph matching algorithm. The experiment results show that the model can improve the contextual reasoning ability of G-chatbots by about 10% and generate answers in a more explainable way. This study innovatively integrates a question–answer–context matching approach, re-question mechanism into the MTRF-G-chatbot model, reducing barriers to citizens’ access to government services and enhancing contextual reasoning abilities.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"55 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515241268863","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, an increasing number of governments have adopted question answering systems (QASs) in public service delivery. As some citizens with limited information literacy often express their questions vaguely when interacting with a chatbot, it is necessary to improve the contextual understanding and reasoning ability of government chatbots (G-chatbots). This goal can be achieved through the optimisation of the matching between question, answer and context. By incorporating the Relational Graph Convolutional Networks (R-GCNs) and fuzzy logic, this study proposes a multi-turn dialogue model that introduces a re-question mechanism and a subgraph matching algorithm. The experiment results show that the model can improve the contextual reasoning ability of G-chatbots by about 10% and generate answers in a more explainable way. This study innovatively integrates a question–answer–context matching approach, re-question mechanism into the MTRF-G-chatbot model, reducing barriers to citizens’ access to government services and enhancing contextual reasoning abilities.
期刊介绍:
The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.