{"title":"HiHGNN: Accelerating HGNNs Through Parallelism and Data Reusability Exploitation","authors":"Runzhen Xue;Dengke Han;Mingyu Yan;Mo Zou;Xiaocheng Yang;Duo Wang;Wenming Li;Zhimin Tang;John Kim;Xiaochun Ye;Dongrui Fan","doi":"10.1109/TPDS.2024.3394841","DOIUrl":null,"url":null,"abstract":"Heterogeneous graph neural networks (HGNNs) have emerged as powerful algorithms for processing heterogeneous graphs (HetGs), widely used in many critical fields. To capture both structural and semantic information in HetGs, HGNNs first aggregate the neighboring feature vectors for each vertex in each semantic graph and then fuse the aggregated results across all semantic graphs for each vertex. Unfortunately, existing graph neural network accelerators are ill-suited to accelerate HGNNs. This is because they fail to efficiently tackle the specific execution patterns and exploit the high-degree parallelism as well as data reusability inside and across the processing of semantic graphs in HGNNs. In this work, we first quantitatively characterize a set of representative HGNN models on GPU to disclose the execution bound of each stage, inter-semantic-graph parallelism, and inter-semantic-graph data reusability in HGNNs. Guided by our findings, we propose a high-performance HGNN accelerator, HiHGNN, to alleviate the execution bound and exploit the newfound parallelism and data reusability in HGNNs. Specifically, we first propose a bound-aware stage-fusion methodology that tailors to HGNN acceleration, to fuse and pipeline the execution stages being aware of their execution bounds. Second, we design an independency-aware parallel execution design to exploit the inter-semantic-graph parallelism. Finally, we present a similarity-aware execution scheduling to exploit the inter-semantic-graph data reusability. Compared to the state-of-the-art software framework running on NVIDIA GPU T4 and GPU A100, HiHGNN respectively achieves an average 40.0× and 8.3× speedup as well as 99.59% and 99.74% energy reduction with quintile the memory bandwidth of GPU A100.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 7","pages":"1122-1138"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10510500/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous graph neural networks (HGNNs) have emerged as powerful algorithms for processing heterogeneous graphs (HetGs), widely used in many critical fields. To capture both structural and semantic information in HetGs, HGNNs first aggregate the neighboring feature vectors for each vertex in each semantic graph and then fuse the aggregated results across all semantic graphs for each vertex. Unfortunately, existing graph neural network accelerators are ill-suited to accelerate HGNNs. This is because they fail to efficiently tackle the specific execution patterns and exploit the high-degree parallelism as well as data reusability inside and across the processing of semantic graphs in HGNNs. In this work, we first quantitatively characterize a set of representative HGNN models on GPU to disclose the execution bound of each stage, inter-semantic-graph parallelism, and inter-semantic-graph data reusability in HGNNs. Guided by our findings, we propose a high-performance HGNN accelerator, HiHGNN, to alleviate the execution bound and exploit the newfound parallelism and data reusability in HGNNs. Specifically, we first propose a bound-aware stage-fusion methodology that tailors to HGNN acceleration, to fuse and pipeline the execution stages being aware of their execution bounds. Second, we design an independency-aware parallel execution design to exploit the inter-semantic-graph parallelism. Finally, we present a similarity-aware execution scheduling to exploit the inter-semantic-graph data reusability. Compared to the state-of-the-art software framework running on NVIDIA GPU T4 and GPU A100, HiHGNN respectively achieves an average 40.0× and 8.3× speedup as well as 99.59% and 99.74% energy reduction with quintile the memory bandwidth of GPU A100.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.