TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials.

Zuotian Li, Xiang Liu, Zelei Cheng, Yingjie Chen, Wanzhu Tu, Jing Su
{"title":"TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials.","authors":"Zuotian Li, Xiang Liu, Zelei Cheng, Yingjie Chen, Wanzhu Tu, Jing Su","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized controlled trials (RCT) are the gold standards for evaluating the efficacy and safety of therapeutic interventions in human subjects. In addition to the pre-specified endpoints, trial participants' experience reveals the time course of the intervention. Few analytical tools exist to summarize and visualize the individual experience of trial participants. Visual analytics allows integrative examination of temporal event patterns of patient experience, thus generating insights for better care decisions. Towards this end, we introduce TrialView, an information system that combines graph artificial intelligence (AI) and visual analytics to enhance the dissemination of trial data. TrialView offers four distinct yet interconnected views: Individual, Cohort, Progression, and Statistics, enabling an interactive exploration of individual and group-level data. The TrialView system is a general-purpose analytical tool for a broad class of clinical trials. The system is powered by graph AI, knowledge-guided clustering, explanatory modeling, and graph-based agglomeration algorithms. We demonstrate the system's effectiveness in analyzing temporal event data through a case study.</p>","PeriodicalId":74512,"journal":{"name":"Proceedings of the ... Annual Hawaii International Conference on System Sciences. Annual Hawaii International Conference on System Sciences","volume":"2024 ","pages":"1169-1178"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Annual Hawaii International Conference on System Sciences. Annual Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized controlled trials (RCT) are the gold standards for evaluating the efficacy and safety of therapeutic interventions in human subjects. In addition to the pre-specified endpoints, trial participants' experience reveals the time course of the intervention. Few analytical tools exist to summarize and visualize the individual experience of trial participants. Visual analytics allows integrative examination of temporal event patterns of patient experience, thus generating insights for better care decisions. Towards this end, we introduce TrialView, an information system that combines graph artificial intelligence (AI) and visual analytics to enhance the dissemination of trial data. TrialView offers four distinct yet interconnected views: Individual, Cohort, Progression, and Statistics, enabling an interactive exploration of individual and group-level data. The TrialView system is a general-purpose analytical tool for a broad class of clinical trials. The system is powered by graph AI, knowledge-guided clustering, explanatory modeling, and graph-based agglomeration algorithms. We demonstrate the system's effectiveness in analyzing temporal event data through a case study.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrialView:用于临床试验中时间事件数据的人工智能可视化分析系统。
随机对照试验(RCT)是评估人体治疗干预效果和安全性的黄金标准。除了预先指定的终点外,试验参与者的经历也揭示了干预的时间过程。目前很少有分析工具能对试验参与者的个人经历进行总结和可视化。可视化分析可以综合检查患者经历的时间事件模式,从而为更好的护理决策提供洞察力。为此,我们介绍了 TrialView,这是一个结合了图形人工智能(AI)和可视化分析技术的信息系统,可加强试验数据的传播。TrialView 提供四种不同但相互关联的视图:个人视图、队列视图、进展视图和统计视图,可对个人和群体层面的数据进行交互式探索。TrialView 系统是适用于各类临床试验的通用分析工具。该系统由图人工智能、知识引导聚类、解释性建模和基于图的聚类算法提供支持。我们通过一个案例研究展示了该系统在分析时间事件数据方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informing Acceptability and Feasibility of Digital Phenotyping for Personalized HIV Prevention among Marginalized Populations Presenting to the Emergency Department. Real-World Implementation Challenges Associated with a Digital Pill System to Measure Adherence to HIV Pre-Exposure Prophylaxis from Two Studies of Men Who Have Sex With Men. TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials. Out with the Old, In with the New: Examining National Cybersecurity Strategy Changes over Time The Roles of Digital Exhibition in Enhancing Immersive Experience and Purchase Intention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1