Marcus Geissler, Christoph Neubauer, Yuriy V Sheludko, Adrian Brückner, Heribert Warzecha
{"title":"Nepeta cataria L. (catnip) can serve as a chassis for the engineering of secondary metabolic pathways.","authors":"Marcus Geissler, Christoph Neubauer, Yuriy V Sheludko, Adrian Brückner, Heribert Warzecha","doi":"10.1007/s10529-024-03489-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences.</p><p><strong>Results: </strong>The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana. To estimate the expression efficiency in both hosts, quantification of the reporter activity was carried out with a sensitive and specific lichenase assay. While N. benthamiana exhibited lichenase activity of 676 ± 94 μmol g<sup>-1</sup> s<sup>-1</sup>, N. cataria cultivar '1000', and the cultivar 'Citriodora' showed an activity of 37 ± 8 μmol g<sup>-1</sup> s<sup>-1</sup> and 18 ± 4 μmol g<sup>-1</sup> s<sup>-1</sup>, respectively. Further, combinatorial expression of genes involved in cannabinoid biosynthetic pathway acyl-activating enzyme 1 (aae1), olivetol synthase (ols) and olivetolic acid cyclase (oac) in N. cataria cv. resulted presumably in the in vivo production of olivetolic acid glycosides.</p><p><strong>Conclusion: </strong>Nepeta cataria is amenable to Agrobacterium-mediated transient expression and could serve as a novel chassis for the engineering of secondary metabolic pathways and transient evaluation of heterologous genes.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"843-850"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03489-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences.
Results: The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana. To estimate the expression efficiency in both hosts, quantification of the reporter activity was carried out with a sensitive and specific lichenase assay. While N. benthamiana exhibited lichenase activity of 676 ± 94 μmol g-1 s-1, N. cataria cultivar '1000', and the cultivar 'Citriodora' showed an activity of 37 ± 8 μmol g-1 s-1 and 18 ± 4 μmol g-1 s-1, respectively. Further, combinatorial expression of genes involved in cannabinoid biosynthetic pathway acyl-activating enzyme 1 (aae1), olivetol synthase (ols) and olivetolic acid cyclase (oac) in N. cataria cv. resulted presumably in the in vivo production of olivetolic acid glycosides.
Conclusion: Nepeta cataria is amenable to Agrobacterium-mediated transient expression and could serve as a novel chassis for the engineering of secondary metabolic pathways and transient evaluation of heterologous genes.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.