N. N. Andrianova, A. M. Borisov, M. A. Ovchinnikov, R. Kh. Khisamov, R. R. Mulyukov
{"title":"Effect of Deformation Nanostructuring on the Ion-Beam Erosion of Copper","authors":"N. N. Andrianova, A. M. Borisov, M. A. Ovchinnikov, R. Kh. Khisamov, R. R. Mulyukov","doi":"10.1134/S1027451024020046","DOIUrl":null,"url":null,"abstract":"<p>The effect of deformation nanostructuring on the ion-beam erosion of copper at a high fluence of irradiation with 30 keV argon ions is experimentally studied. To form an ultrafine-grained structure with a grain size of ~0.4 μm in copper samples with an initial grain size of about 2 μm, deformation nanostructuring by high-pressure torsion is used. It is found that when a layer with a thickness comparable to the grain size is sputtered, a steady-state cone-shaped relief is formed on the copper surface, the appearance of which does not change with increasing irradiation fluence. It is shown that the smaller the grain size in copper, the greater the concentration and the smaller the height of the cones on the surface. The cone inclination angles, close to 82°, as well as the sputtering yield of 9.6 at/ion, are practically independent of the grain size of copper, the thickness of the sputtered layer, and the irradiation fluence. Calculations using the SRIM program show that, when taking into account the redeposition of atoms from the walls of the cones, the sputtering yield of a cone-shaped copper relief <i>Y</i><sub>c</sub> is 3.5 times less than the sputtering yield of a single cone, 1.2 times greater than the sputtering yield of a smooth surface, and the value of 9.25 at/ion is close to the experimentally measured one.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 2","pages":"305 - 312"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of deformation nanostructuring on the ion-beam erosion of copper at a high fluence of irradiation with 30 keV argon ions is experimentally studied. To form an ultrafine-grained structure with a grain size of ~0.4 μm in copper samples with an initial grain size of about 2 μm, deformation nanostructuring by high-pressure torsion is used. It is found that when a layer with a thickness comparable to the grain size is sputtered, a steady-state cone-shaped relief is formed on the copper surface, the appearance of which does not change with increasing irradiation fluence. It is shown that the smaller the grain size in copper, the greater the concentration and the smaller the height of the cones on the surface. The cone inclination angles, close to 82°, as well as the sputtering yield of 9.6 at/ion, are practically independent of the grain size of copper, the thickness of the sputtered layer, and the irradiation fluence. Calculations using the SRIM program show that, when taking into account the redeposition of atoms from the walls of the cones, the sputtering yield of a cone-shaped copper relief Yc is 3.5 times less than the sputtering yield of a single cone, 1.2 times greater than the sputtering yield of a smooth surface, and the value of 9.25 at/ion is close to the experimentally measured one.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.