Enhancing crystal integrity and structural rigidity of CsPbBr3 nanoplatelets to achieve a narrow color-saturated blue emission

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-05-11 DOI:10.1038/s41377-024-01441-1
Qianqian Huang, Wenxu Yin, Bo Gao, Qingsen Zeng, Dong Yao, Hao Zhang, Yinghe Zhao, Weijia Zheng, Jiaqi Zhang, Xuyong Yang, Xiaoyu Zhang, Andrey L. Rogach
{"title":"Enhancing crystal integrity and structural rigidity of CsPbBr3 nanoplatelets to achieve a narrow color-saturated blue emission","authors":"Qianqian Huang, Wenxu Yin, Bo Gao, Qingsen Zeng, Dong Yao, Hao Zhang, Yinghe Zhao, Weijia Zheng, Jiaqi Zhang, Xuyong Yang, Xiaoyu Zhang, Andrey L. Rogach","doi":"10.1038/s41377-024-01441-1","DOIUrl":null,"url":null,"abstract":"<p>Quantum-confined CsPbBr<sub>3</sub> perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr<sub>3</sub> nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a Cs<sub>x</sub>O monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr<sub>3</sub> NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr<sub>3</sub> NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01441-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强 CsPbBr3 纳米片的晶体完整性和结构刚度,实现窄色饱和蓝光发射
量子约束 CsPbBr3 包晶石是很有希望用于超高清显示器的蓝色发光体,但其高离子性导致的软晶格稳定性有限。在这里,我们利用强结合的 N-十二烷基苯磺酸(DBSA),通过适当的表面工程赋予 CsPbBr3 纳米片(NPLs)原子晶体般的结构刚性。通过优化中间反应阶段,将分子簇转换成单八面体,从而实现了这些 NPL 稳定、坚硬的晶体结构以及均匀、有序排列的表面,而与 DBSA 的相互作用则形成了覆盖 NPL 表面的 CsxO 单层壳。因此,DBSA 的强共价键增强了 CsPbBr3 NPL 的结构和光学稳定性,抑制了配体解吸可能导致的不希望的相变和包晶相分解。此外,NPL 表面的 DBSA 配体数量相当少,导致其紧密堆积的薄膜中 NPL 间距较短,有利于电荷的有效注入和传输。所制备的 CsPbBr3 NPL 具有明亮的蓝色光致发光(发射量子产率几乎为零),在 80 K 时的峰值为 457 nm,带宽极窄,仅为 3.7 nm,而电致发光的带宽(峰值为 460 nm)在室温下也达到了创纪录的 15 nm 窄值。该值与 CIE 坐标(0.141, 0.062)相对应,符合 Rec.2020 超高清显示标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Ultra-fast light-field microscopy with event detection Quantum sensing with optically accessible spin defects in van der Waals layered materials Polaritons light up future displays Color-conversion displays: current status and future outlook Dynamic synthetic-scanning photoacoustic tracking monitors hepatic and renal clearance pathway of exogeneous probes in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1