Tyler E. Billipp, Connie Fung, Lily M. Webeck, Derek B. Sargent, Matthew B. Gologorsky, Zuojia Chen, Margaret M. McDaniel, Darshan N. Kasal, John W. McGinty, Kaitlyn A. Barrow, Lucille M. Rich, Alessio Barilli, Mark Sabat, Jason S. Debley, Chuan Wu, Richard Myers, Michael R. Howitt, Jakob von Moltke
{"title":"Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance","authors":"Tyler E. Billipp, Connie Fung, Lily M. Webeck, Derek B. Sargent, Matthew B. Gologorsky, Zuojia Chen, Margaret M. McDaniel, Darshan N. Kasal, John W. McGinty, Kaitlyn A. Barrow, Lucille M. Rich, Alessio Barilli, Mark Sabat, Jason S. Debley, Chuan Wu, Richard Myers, Michael R. Howitt, Jakob von Moltke","doi":"10.1016/j.immuni.2024.03.023","DOIUrl":null,"url":null,"abstract":"<p>Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the “weep” response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":null,"pages":null},"PeriodicalIF":25.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.03.023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the “weep” response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.