A fast and robust quantum random number generator with a self-contained integrated photonic randomness core

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2024-05-15 DOI:10.1038/s41928-024-01140-0
Davide G. Marangon, Peter R. Smith, Nathan Walk, Taofiq K. Paraïso, James F. Dynes, Victor Lovic, Mirko Sanzaro, Thomas Roger, Innocenzo De Marco, Marco Lucamarini, Zhiliang Yuan, Andrew J. Shields
{"title":"A fast and robust quantum random number generator with a self-contained integrated photonic randomness core","authors":"Davide G. Marangon, Peter R. Smith, Nathan Walk, Taofiq K. Paraïso, James F. Dynes, Victor Lovic, Mirko Sanzaro, Thomas Roger, Innocenzo De Marco, Marco Lucamarini, Zhiliang Yuan, Andrew J. Shields","doi":"10.1038/s41928-024-01140-0","DOIUrl":null,"url":null,"abstract":"Generating random numbers securely and at a high rate is important for information technology. Integrated photonics could potentially be used to create mass-manufactured quantum random number generators. However, the development of robust and scalable approaches that are compatible with industrial deployment is challenging. Here, we report a fast quantum random number generator based on a photonic integrated circuit directly embedded on an electronic platform. We manufacture eight boards, which harvest randomness from an optical entropy core and process and distribute it in real time. We benchmark performance over a week of continuous gigahertz operation. We deploy our quantum random number generator in a quantum key distribution system and, despite operating in an uncontrolled environment, the physical randomness features minimal variations over 2.9 million histograms collected over 38 days. We also use a security model with our quantum random number generator to adjust the rate of the randomness content generated and demonstrate secure generation at 2 Gbit s−1. An integrated photonic circuit that is directly embedded on an electronic platform can generate random numbers at a rate of 2 Gbit s−1.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01140-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Generating random numbers securely and at a high rate is important for information technology. Integrated photonics could potentially be used to create mass-manufactured quantum random number generators. However, the development of robust and scalable approaches that are compatible with industrial deployment is challenging. Here, we report a fast quantum random number generator based on a photonic integrated circuit directly embedded on an electronic platform. We manufacture eight boards, which harvest randomness from an optical entropy core and process and distribute it in real time. We benchmark performance over a week of continuous gigahertz operation. We deploy our quantum random number generator in a quantum key distribution system and, despite operating in an uncontrolled environment, the physical randomness features minimal variations over 2.9 million histograms collected over 38 days. We also use a security model with our quantum random number generator to adjust the rate of the randomness content generated and demonstrate secure generation at 2 Gbit s−1. An integrated photonic circuit that is directly embedded on an electronic platform can generate random numbers at a rate of 2 Gbit s−1.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自足式集成光子随机性内核的快速稳健量子随机数发生器
安全、高速地生成随机数对信息技术非常重要。集成光子学可用于制造大规模量子随机数发生器。然而,开发与工业部署兼容的稳健且可扩展的方法具有挑战性。在此,我们报告了一种基于直接嵌入电子平台的光子集成电路的快速量子随机数发生器。我们制造了八块电路板,它们从光学熵核中获取随机数,并实时处理和分配随机数。我们对连续运行一周的千兆赫性能进行了基准测试。我们在量子密钥分发系统中部署了量子随机数发生器,尽管是在不受控制的环境中运行,但在 38 天内收集的 290 万个直方图中,物理随机性的变化极小。我们还利用量子随机数发生器的安全模型来调整随机性内容的生成速率,并演示了以 2 Gbit s-1 的速度安全生成随机性内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
Two-dimensional transistors heat up Flexible strain gauges that can be picked and placed A sense of touch without skin Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics A microspectrometer with dual-signal spectral reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1