Daniele Soccodato, Gabriele Penazzi, Alessandro Pecchia, Anh-Luan Phan, Matthias Auf der Maur
{"title":"Machine learned environment-dependent corrections for a spds∗ empirical tight-binding basis","authors":"Daniele Soccodato, Gabriele Penazzi, Alessandro Pecchia, Anh-Luan Phan, Matthias Auf der Maur","doi":"10.1088/2632-2153/ad4510","DOIUrl":null,"url":null,"abstract":"Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and transport properties for systems composed of thousands of atoms. However, their performance is profoundly dependent on the way the empirical parameters were fitted, and the found parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities of this method, we introduce a novel Δ-learning scheme, called MLΔTB. After being trained on a custom data set composed of <italic toggle=\"yes\">ab-initio</italic> band structures, the framework is able to correlate the local atomistic environment to a correction on the on-site ETB parameters, for each atom in the system. The converged algorithm is applied to simulate the electronic properties of random GaAsSb alloys, and displays remarkable agreement both with experimental and <italic toggle=\"yes\">ab-initio</italic> test data. Some noteworthy characteristics of MLΔTB include the ability to be trained on few instances, to be applied on 3D supercells of arbitrary size, to be rotationally invariant, and to predict physical properties that are not exhibited by the training set.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4510","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and transport properties for systems composed of thousands of atoms. However, their performance is profoundly dependent on the way the empirical parameters were fitted, and the found parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities of this method, we introduce a novel Δ-learning scheme, called MLΔTB. After being trained on a custom data set composed of ab-initio band structures, the framework is able to correlate the local atomistic environment to a correction on the on-site ETB parameters, for each atom in the system. The converged algorithm is applied to simulate the electronic properties of random GaAsSb alloys, and displays remarkable agreement both with experimental and ab-initio test data. Some noteworthy characteristics of MLΔTB include the ability to be trained on few instances, to be applied on 3D supercells of arbitrary size, to be rotationally invariant, and to predict physical properties that are not exhibited by the training set.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.