High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-05-16 DOI:10.1002/aenm.202400127
Ranran Li, Xuan Qin, Xiaolei Li, Jianxun Zhu, Li-Rong Zheng, Zhongtao Li, Weidong Zhou
{"title":"High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries","authors":"Ranran Li,&nbsp;Xuan Qin,&nbsp;Xiaolei Li,&nbsp;Jianxun Zhu,&nbsp;Li-Rong Zheng,&nbsp;Zhongtao Li,&nbsp;Weidong Zhou","doi":"10.1002/aenm.202400127","DOIUrl":null,"url":null,"abstract":"<p>Cycling stability is the biggest challenge for cathodes of sodium-ion batteries (SIBs), which is directly affected by the structure design. Herein, the combination of high-entropy (HE) and multiphase structure is demonstrated to be helpful for maintaining the structure and improving the cycling stability. In the Ni/Mn/Cu/Ti/Sn five-component HE multiphase cathode, the multiple elements at transition metal sites can enlarge the lattice and stabilize the structure simultaneously without causing an obvious capacity drop, achieving the synergistic effect of multi-cations. In the HE cathodes consisting of P2 and O3 phases, the harmful phase transition in high-voltage is suppressed and the cycling performance is improved. A capacity retention of 77.3 mAh g<sup>−1</sup> after 300 cycles is delivered, and an improved rate performance of 88.7 mAh g<sup>−1</sup> at 750 mA g<sup>−1</sup> is observed, better than that of the low-entropy multiphase cathode(P2 and O3) and the HE oxide single O3-phase cathode. The weighted average ionic radius(<i>WAIR</i>) of all transition metals is demonstrated critical for the formation of the phase composition in HE composites. Through comparing a series of HE and multiphase cathodes, an empirical range of <i>WAIR</i> is obtained, which shows guidance for the design of other cathode materials.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202400127","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cycling stability is the biggest challenge for cathodes of sodium-ion batteries (SIBs), which is directly affected by the structure design. Herein, the combination of high-entropy (HE) and multiphase structure is demonstrated to be helpful for maintaining the structure and improving the cycling stability. In the Ni/Mn/Cu/Ti/Sn five-component HE multiphase cathode, the multiple elements at transition metal sites can enlarge the lattice and stabilize the structure simultaneously without causing an obvious capacity drop, achieving the synergistic effect of multi-cations. In the HE cathodes consisting of P2 and O3 phases, the harmful phase transition in high-voltage is suppressed and the cycling performance is improved. A capacity retention of 77.3 mAh g−1 after 300 cycles is delivered, and an improved rate performance of 88.7 mAh g−1 at 750 mA g−1 is observed, better than that of the low-entropy multiphase cathode(P2 and O3) and the HE oxide single O3-phase cathode. The weighted average ionic radius(WAIR) of all transition metals is demonstrated critical for the formation of the phase composition in HE composites. Through comparing a series of HE and multiphase cathodes, an empirical range of WAIR is obtained, which shows guidance for the design of other cathode materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于钠离子电池的高熵和多相阴极材料
循环稳定性是钠离子电池(SIB)阴极面临的最大挑战,它直接受到结构设计的影响。本文证明了高熵 (HE) 和多相结构的结合有助于保持结构和提高循环稳定性。在 Ni/Mn/Cu/Ti/Sn 五组分 HE 多相阴极中,过渡金属位点上的多种元素可同时扩大晶格和稳定结构,而不会造成明显的容量下降,实现了多阳离子的协同效应。在由 P2 相和 O3 相组成的 HE 阴极中,高压下的有害相变被抑制,循环性能得到改善。循环 300 次后的容量保持率为 77.3 mAh g-1,750 mA g-1 时的速率性能为 88.7 mAh g-1,优于低熵多相阴极(P2 和 O3)和 HE 氧化物单 O3 相阴极。所有过渡金属的加权平均离子半径(WAIR)对 HE 复合材料中相组成的形成至关重要。通过比较一系列 HE 和多相阴极,得出了 WAIR 的经验范围,为设计其他阴极材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Efficient and Stable Organic Solar Cells Achieved by Synergistic Optimization of Extended End-Capped Groups and Fluorinated Quinoxaline Central Cores in Nonfullerene Acceptors Surface Potential Homogenization Improves Perovskite Solar Cell Performance Ultrasensitive, Fast-Response, and Stretchable Temperature Microsensor Based on a Stable Encapsulated Organohydrogel Film for Wearable Applications. Dual-Site Anchors Enabling Vertical Molecular Orientation for Efficient All-Perovskite Tandem Solar Cells Fe-N-C in Proton Exchange Membrane Fuel Cells: Impact of Ionomer Loading on Degradation and Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1