{"title":"Effects of Processing Parameters and Tool Geometric Parameters on Residual Stress of Machined 304 Stainless Steel","authors":"Wenqian Zhang, Hongtao Dong, Yongchun Li, Chongwen Yang, Xinli Jiang, Xuelin Wang","doi":"10.1007/s11665-024-09569-2","DOIUrl":null,"url":null,"abstract":"<div><p>The machined surface residual stress plays a critical role in stress corrosion cracking resistance and fatigue performance of austenitic stainless steels. Controlling the residual stress by changing machining parameters is an effective way to improve the service performance of components. This paper explores the effects of processing parameters and tool geometric parameters on residual stress by establishing an analytical model for residual stress evaluation on machined surface. Considering the thermo-mechanical coupling effects of machining, a multi-physics framework of orthogonal cutting process is built up. From the coupling mechanical and thermal loads, the variations of stress, strain and temperature are modelled by an elastoplastic procedure. Based on the mechanism of residual stress and the loading-unloading model, the prediction of residual stress is achieved. Experimental tests are conducted for model validation. By simulating the cutting processes under different conditions and analyzing the main factors that affecting the stress/strain and temperature fields, the effects of cutting parameters and tool geometric parameters on residual stress are revealed.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 and Control","pages":"7728 - 7743"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09569-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The machined surface residual stress plays a critical role in stress corrosion cracking resistance and fatigue performance of austenitic stainless steels. Controlling the residual stress by changing machining parameters is an effective way to improve the service performance of components. This paper explores the effects of processing parameters and tool geometric parameters on residual stress by establishing an analytical model for residual stress evaluation on machined surface. Considering the thermo-mechanical coupling effects of machining, a multi-physics framework of orthogonal cutting process is built up. From the coupling mechanical and thermal loads, the variations of stress, strain and temperature are modelled by an elastoplastic procedure. Based on the mechanism of residual stress and the loading-unloading model, the prediction of residual stress is achieved. Experimental tests are conducted for model validation. By simulating the cutting processes under different conditions and analyzing the main factors that affecting the stress/strain and temperature fields, the effects of cutting parameters and tool geometric parameters on residual stress are revealed.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered