{"title":"Effect of Co2+ Doping on Electrochemical Properties of Nickel Metal Tungstate (NiWO4) Positive Material","authors":"Jing Tang, Hui Xu, Yong Chen, Yuanqiang Zhu","doi":"10.1007/s13391-024-00493-0","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO<sub>4</sub> amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO<sub>4</sub> and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, and at a current density of 10 A g<sup>−1</sup>, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and a high energy density of 47 Wh kg<sup>−1</sup> at a power density of 527 W kg<sup>−1</sup>. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO<sub>4</sub> and CNWO-10 samples are 9.01 × 10<sup>–8</sup> S m<sup>−1</sup> and 8.93 × 10<sup>–6</sup> S m<sup>−1</sup>, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"459 - 473"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00493-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO4 amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO4 and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g−1 at 1 A g−1, and at a current density of 10 A g−1, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g−1 at 0.5 A g−1, and a high energy density of 47 Wh kg−1 at a power density of 527 W kg−1. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO4 and CNWO-10 samples are 9.01 × 10–8 S m−1 and 8.93 × 10–6 S m−1, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.