Shuyou Zhang, Jiangjiang Zhang, Lili Niu, Qiang Chen, Qing Zhou, Nan Xiao, Jun Man, Jianqing Ma, Changlong Wei, Songhe Zhang, Yongming Luo, Yijun Yao
{"title":"Escalating arsenic contamination throughout Chinese soils","authors":"Shuyou Zhang, Jiangjiang Zhang, Lili Niu, Qiang Chen, Qing Zhou, Nan Xiao, Jun Man, Jianqing Ma, Changlong Wei, Songhe Zhang, Yongming Luo, Yijun Yao","doi":"10.1038/s41893-024-01341-7","DOIUrl":null,"url":null,"abstract":"China faces widespread soil arsenic pollution caused by intensified industrial and agricultural activities, the impacts of which, however, have never been evaluated at the national scale. In this study, we developed a machine-learning model built on 3,524 surveys, representing over one million soil samples, to generate annual maps of arsenic concentration in China’s surface soils for the period 2000–2040. The model has uncovered a worrying trend of increasing arsenic concentrations, rising from a mean of 11.9 mg kg−1 in 2000 to 12.6 mg kg−1 in 2020, with an anticipated further increase to 13.6 mg kg−1 by 2040. The primary anthropogenic causes have been identified as non-ferrous mining activities (68.0%), followed by energy consumption (15.8%), smelting (13.2%) and farming practices (3.0%). Furthermore, in 2000, 2020 and 2040, the model predicts that 13.0%, 17.1% and 18.3% of rice production and 10.0%, 13.9% and 15.9% of the population, respectively, would be located on soils with arsenic concentrations over 20 mg kg−1. Despite the establishment of initiatives such as the Soil Pollution Prevention and Control Action Plan by the Chinese government to restrain this burgeoning arsenic pollution, our findings underscore the urgent need for more vigorous measures to stall or reverse this disturbing trend. Industrial and agricultural activities, such as mining, smelting and farming practices, have led to widespread arsenic pollution in Chinese soils and may threaten the viability of future rice production. Ambitious mitigation measures beyond those already undertaken by the Chinese government are needed to reverse these increasing impacts.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":null,"pages":null},"PeriodicalIF":25.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01341-7","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
China faces widespread soil arsenic pollution caused by intensified industrial and agricultural activities, the impacts of which, however, have never been evaluated at the national scale. In this study, we developed a machine-learning model built on 3,524 surveys, representing over one million soil samples, to generate annual maps of arsenic concentration in China’s surface soils for the period 2000–2040. The model has uncovered a worrying trend of increasing arsenic concentrations, rising from a mean of 11.9 mg kg−1 in 2000 to 12.6 mg kg−1 in 2020, with an anticipated further increase to 13.6 mg kg−1 by 2040. The primary anthropogenic causes have been identified as non-ferrous mining activities (68.0%), followed by energy consumption (15.8%), smelting (13.2%) and farming practices (3.0%). Furthermore, in 2000, 2020 and 2040, the model predicts that 13.0%, 17.1% and 18.3% of rice production and 10.0%, 13.9% and 15.9% of the population, respectively, would be located on soils with arsenic concentrations over 20 mg kg−1. Despite the establishment of initiatives such as the Soil Pollution Prevention and Control Action Plan by the Chinese government to restrain this burgeoning arsenic pollution, our findings underscore the urgent need for more vigorous measures to stall or reverse this disturbing trend. Industrial and agricultural activities, such as mining, smelting and farming practices, have led to widespread arsenic pollution in Chinese soils and may threaten the viability of future rice production. Ambitious mitigation measures beyond those already undertaken by the Chinese government are needed to reverse these increasing impacts.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.