Natural convection in nanofluid enclosure under magnetic field: Entropy generation and economic analysis

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE Propulsion and Power Research Pub Date : 2024-06-01 DOI:10.1016/j.jppr.2024.04.002
Jiang-Tao Hu , Shuo-Jun Mei
{"title":"Natural convection in nanofluid enclosure under magnetic field: Entropy generation and economic analysis","authors":"Jiang-Tao Hu ,&nbsp;Shuo-Jun Mei","doi":"10.1016/j.jppr.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the unsteady natural convection and entropy generation under the effects of magnetic field and baffles inside a nanofluid filled E-shaped enclosure. The nanofluid flow is driven by time-varying sidewall temperature and is partitioned by baffles. Multiple factors are discussed, including the enclosure aspect ratio (0.2 ≤ <em>AR</em> ≤ 0.7), nanofluid volume fractions (0 ≤ <em>ϕ</em> ≤ 0.1), Hartmann numbers (0 ≤ <em>Ha</em> ≤ 80), frequency of time-varying side wall temperature (0.01 ≤ <em>ω</em> ≤ 0.1), baffle locations (0 ≤ <em>d</em> ≤ 0.4) and length (0 ≤ <em>l</em> ≤ 0.4). An economic analysis is conducted to show the nanofluid cost of enhancing thermal transfer and reducing entropy generation. The modelling results show that increasing aspect ratio and nanofluid volume fraction enhance the thermal transfer behavior, while the magnetic field suppresses the nanofluid natural convection. Total entropy generation monotonically decreases with the increasing nanofluid volume fraction and Hartmann number. Installing baffles into horizontal walls can boost the thermal transfer behavior and decrease the total entropy generation. The economic analysis shows that increasing the nanofluid volume fraction can effectively improve the thermal economy, and this improvement increases with magnetic intensity.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 2","pages":"Pages 273-293"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X24000233/pdfft?md5=6e27ded646536cebbb42f694f340601c&pid=1-s2.0-S2212540X24000233-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X24000233","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the unsteady natural convection and entropy generation under the effects of magnetic field and baffles inside a nanofluid filled E-shaped enclosure. The nanofluid flow is driven by time-varying sidewall temperature and is partitioned by baffles. Multiple factors are discussed, including the enclosure aspect ratio (0.2 ≤ AR ≤ 0.7), nanofluid volume fractions (0 ≤ ϕ ≤ 0.1), Hartmann numbers (0 ≤ Ha ≤ 80), frequency of time-varying side wall temperature (0.01 ≤ ω ≤ 0.1), baffle locations (0 ≤ d ≤ 0.4) and length (0 ≤ l ≤ 0.4). An economic analysis is conducted to show the nanofluid cost of enhancing thermal transfer and reducing entropy generation. The modelling results show that increasing aspect ratio and nanofluid volume fraction enhance the thermal transfer behavior, while the magnetic field suppresses the nanofluid natural convection. Total entropy generation monotonically decreases with the increasing nanofluid volume fraction and Hartmann number. Installing baffles into horizontal walls can boost the thermal transfer behavior and decrease the total entropy generation. The economic analysis shows that increasing the nanofluid volume fraction can effectively improve the thermal economy, and this improvement increases with magnetic intensity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场下纳米流体围护结构中的自然对流:熵的产生和经济性分析
本研究探讨了在磁场和障板的作用下,充满纳米流体的 E 型外壳内的非稳定自然对流和熵的产生。纳米流体流由随时间变化的侧壁温度驱动,并由挡板分隔。对多种因素进行了讨论,包括外壳长宽比(0.2 ≤ AR ≤ 0.7)、纳米流体体积分数(0 ≤ ϕ ≤ 0.1)、哈特曼数(0 ≤ Ha ≤ 80)、侧壁温度时变频率(0.01 ≤ ω ≤ 0.1)、挡板位置(0 ≤ d ≤ 0.4)和长度(0 ≤ l ≤ 0.4)。经济分析表明了纳米流体在增强热传递和减少熵产生方面的成本。建模结果表明,增大高宽比和纳米流体体积分数会增强热传递行为,而磁场会抑制纳米流体的自然对流。总熵的产生随着纳米流体体积分数和哈特曼数的增加而单调减少。在水平壁上安装挡板可以提高热传导性能,减少总熵的产生。经济性分析表明,提高纳米流体体积分数可有效改善热经济性,且这种改善随磁场强度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
期刊最新文献
Auto-updating model-based control for thrust variation mitigation and acceleration performance enhancement of gas turbine aero-engines Experimental study of corner separation and unsteady characteristics in linear compressor cascades with and without sweeping jet actuator Solitary, periodic, kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory Structural design of aeroengine radiators: State of the art and perspectives Entropy optimization on Casson nanofluid flow with radiation and Arrhenius activation energy over different geometries: A numerical and statistical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1