Simulation of coupling characteristics of motion and heat transfer between airflow and ice crystals in a single-stage compressor

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE Propulsion and Power Research Pub Date : 2024-12-01 DOI:10.1016/j.jppr.2024.04.003
Ping Huang , Xueqin Bu , Guiping Lin , Quanyong Xu , Chunhua Xiao
{"title":"Simulation of coupling characteristics of motion and heat transfer between airflow and ice crystals in a single-stage compressor","authors":"Ping Huang ,&nbsp;Xueqin Bu ,&nbsp;Guiping Lin ,&nbsp;Quanyong Xu ,&nbsp;Chunhua Xiao","doi":"10.1016/j.jppr.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the coupling characteristics of motion and heat transfer between airflow and ice crystals in a single-stage compressor. The motion and phase transition process of ice crystal particles were modeled using the Eulerian trajectory method and validated. The heat and mass transfer processes between airflows in compressor and ice crystals were simulated and analyzed. The melting ratio, catching efficiency, and sticking efficiency of ice crystals were obtained, as well as variations in temperature and humidity ratio in the airflow due to ice crystal phase change. The results show that the ice crystals sticking to blades in the single-stage compressor account for 10.35% of the impact mass flow rate. Additionally, the presence of ice crystals causes a 0.466 K decrease in the airflow temperature and a 0.114 g/kg(a) increase in the humidity ratio. The theoretical model and calculation method provide strong support for future ice crystal icing simulations and engine operation research.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 4","pages":"Pages 570-585"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X24000245","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the coupling characteristics of motion and heat transfer between airflow and ice crystals in a single-stage compressor. The motion and phase transition process of ice crystal particles were modeled using the Eulerian trajectory method and validated. The heat and mass transfer processes between airflows in compressor and ice crystals were simulated and analyzed. The melting ratio, catching efficiency, and sticking efficiency of ice crystals were obtained, as well as variations in temperature and humidity ratio in the airflow due to ice crystal phase change. The results show that the ice crystals sticking to blades in the single-stage compressor account for 10.35% of the impact mass flow rate. Additionally, the presence of ice crystals causes a 0.466 K decrease in the airflow temperature and a 0.114 g/kg(a) increase in the humidity ratio. The theoretical model and calculation method provide strong support for future ice crystal icing simulations and engine operation research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟单级压缩机中气流与冰晶之间的运动和传热耦合特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
期刊最新文献
Anomaly distribution acquisition method for probabilistic damage tolerance assessment of hole features Simulation of coupling characteristics of motion and heat transfer between airflow and ice crystals in a single-stage compressor Adaptive Coanda jet control for performance improvement of a highly loaded compressor cascade Temporal stability analysis and thermal performance of non-Newtonian nanofluid over a shrinking wedge A study of an air-breathing electrodeless plasma thruster discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1